Patents by Inventor Anthony Herman

Anthony Herman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11686193
    Abstract: A method includes positioning a formation tester tool into a borehole formed within a formation and radially expanding a first and second radially extendable packers of the formation tester tool out from the formation tester tool to the formation to form a sealed volume between the first radially extendable packer and the second radially extendable packer. The method includes radially extending a pad of the formation tester tool that is positioned between the first radially extendable packer and the second radially extendable packer to form a sealed connection volume between the formation and a pressure sensor within the pad. The method includes acquiring a first pressure measurement, using the pressure sensor, from fluids in the sealed connection volume and extracting fluid from the sealed volume to reduce pressure around the pad. The method includes acquiring a second pressure measurement, using the pressure sensor, from fluids in the sealed connection volume.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: June 27, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Publication number: 20230184108
    Abstract: This disclosure presents systems and processes to collect elemental composition of target fluid and solid material located downhole of a borehole. Waveguides can be utilized that include capillary optics to deliver emitted high energy into a container or a conduit and then to detect the high energy. A source waveguide can be used to emit the high energy into the target fluid and a detector waveguide can collect resulting measurements. Each waveguide can include a protective sheath and a pressure cap on the end of the capillary optics that are proximate the target fluid, to protect against abrasion and target fluid pressure. In other aspects, a pulsed neutron tool can be utilized in place of the waveguides to collect measurements. The collected measurements can be utilized to generate chemical signature results that can be utilized to determine the elemental composition of the target fluid or of the solid material.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Inventors: Christopher Michael Jones, Jeffrey James Crawford, Anthony Herman van Zulekom, Darren George Gascooke
  • Patent number: 11661839
    Abstract: A method and system for performing a pressure test. The method may comprise inserting a formation testing tool into a wellbore to a first location within the wellbore, identifying one or more tool parameters of the formation testing tool, performing a first pre-test with the pressure transducer when the pressure has stabilized to identify formation parameters, inputting the formation parameters and the one or more tool parameters into a forward model, changing the one or more tool parameters to a second set of tool parameters; performing a second pre-test with the second set of tool parameters; and comparing the first pre-test to the second pre-test. A system may comprise at least one probe, a pump disposed within the formation testing tool, at least one stabilizer, a pressure transducer disposed at least partially in the at least one fluid passageway, and an information handling system.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: May 30, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
  • Patent number: 11655705
    Abstract: An apparatus includes a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The formation tester tool includes first and second inner radially extendable packers that are axially above and below the pad, respectively, with respect to the axis of the formation tester tool. The apparatus includes a first outer radially extendable packer that is axially above the first inner radially extendable packer with respect to the axis of the formation tester tool and a second outer radially extendable packer that is axially below the second inner radially extendable packer with respect to the axis of the formation tester tool.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: May 23, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11643928
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: May 9, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Publication number: 20230137185
    Abstract: A downhole PVT tool for performing in-situ formation fluid phase behavior characterizations in a wellbore using pressure, volume, and temperature (PVT) measurements of the formation fluid while continuing to pump the formation fluids. The disclosed downhole PVT tool includes an intake mandrel and utilizes two individual pumps to split the formation fluid to perform PVT measurements during the fluid pump out. The downhole PVT tool, two-pump configuration permits a first pump to be used to pump formation fluid along a first flowpath and a second pump to be used to pump formation fluid along a second flowpath, with one or more sensors deployed along one of the flowpaths to perform fluid and/or gas phase behavior measurements to determine one or more properties of the formation fluid in-situ. The first pump may be utilized in the phase behavior analysis while the second pump simultaneously continues flow-through pumping of the formation fluid.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 4, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Marcus Ray Hudson
  • Publication number: 20230122970
    Abstract: A formation sampling tool including a plurality of ferrofluidic seals for sealing the formation sampling tool against a wellbore wall of a wellbore, each adjacent pair of the plurality of ferrofluidic seals defining a formation fluid inflow section through which formation fluid enters the formation sampling tool via fluid inflow lines, wherein a first ferrofluidic seal of the plurality of ferrofluidic seals is distal a drill bit, and wherein a last ferrofluidic seal of the plurality of ferrofluidic seals is proximate the drill bit; a formation fluid sampling line, wherein the formation fluid sampling line is in fluid communication with the one or more fluid inflow lines; one or more sensors in fluid communication with the one or more fluid inflow lines and/or the formation fluid sampling line; and a pump configured to pump formation fluid into the formation sampling tool via each of the formation fluid inflow sections.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 20, 2023
    Inventors: Christopher Michael JONES, Darren George GASCOOKE, Mehdi Ali Pour KALLEHBASTI, Anthony Herman VAN ZUILEKOM
  • Patent number: 11624279
    Abstract: A method comprises flowing a mud into a wellbore, wherein the mud has a mud composition and has a weight in a defined range. The method includes introducing a fluid pill into the mud flowing into the wellbore, wherein the fluid pill has an injection fluid with an injection composition that is different from the mud composition. A particulate has been added to the injection fluid to increase the weight of the fluid pill. After flowing the mud into the wellbore such that the fluid pill is positioned in a zone of the wellbore: filtering out the particulate from the injection fluid; injecting, after the filtering, the injection fluid into the zone; measuring a downhole parameter that changes in response to injecting the injection fluid into the zone; and determining a property of the formation of the zone based on the measured downhole parameter.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: April 11, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Marcus Ray Hudson, Pramod Chamarthy, Michel Joseph LeBlanc, Christopher Michael Jones, Darren George Gascooke, Anthony Herman van Zuilekom, Jay Paul Deville, William W. Shumway, Dale E. Jamison
  • Publication number: 20230106930
    Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore; performing a pressure test operation within the wellbore; performing a pumpout operation within the wellbore; identifying one or more formation parameters at least in part from the at least one pressure test operation or the at least one pumpout operation; building a correlation model that relates a pumpout trend to the one or more formation parameters; determining a time when the downhole fluid sampling tool takes a clean fluid sample utilizing at least the correlation model; and acquiring the clean fluid sample with the downhole fluid sampling tool from the wellbore. Additionally, a system may comprise a downhole fluid sampling tool configured to: perform a pressure test operation within a wellbore; and perform a pumpout operation within the wellbore; and.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 6, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
  • Patent number: 11619130
    Abstract: A formation sampling tool including a plurality of ferrofluidic seals for sealing the formation sampling tool against a wellbore wall of a wellbore, each adjacent pair of the plurality of ferrofluidic seals defining a formation fluid inflow section through which formation fluid enters the formation sampling tool via fluid inflow lines, wherein a first ferrofluidic seal of the plurality of ferrofluidic seals is distal a drill bit, and wherein a last ferrofluidic seal of the plurality of ferrofluidic seals is proximate the drill bit; a formation fluid sampling line, wherein the formation fluid sampling line is in fluid communication with the one or more fluid inflow lines; one or more sensors in fluid communication with the one or more fluid inflow lines and/or the formation fluid sampling line; and a pump configured to pump formation fluid into the formation sampling tool via each of the formation fluid inflow sections.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 4, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Mehdi Ali Pour Kallehbasti, Anthony Herman Van Zuilekom
  • Publication number: 20230096270
    Abstract: A downhole tool comprises at least one inlet and a first pump coupled to the at least one inlet via a first flow line. The first pump is to pump at a first pump rate to extract fluid via the at least one inlet from a subsurface formation in which a borehole is created and in which the downhole tool is to be positioned. A sample chamber is coupled to the inlet via a second flow line, and a second pump is coupled to the inlet via the second flow line. The second pump is to pump at a second pump rate to extract the fluid via the at least one inlet from the subsurface formation and for storage in the sample chamber. The first pump rate is greater than the second pump rate.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Inventors: Christopher Michael Jones, Anthony Herman van Zuilekom, Darren George Gascooke
  • Publication number: 20230103029
    Abstract: A downhole probe can be utilized in a wellbore to accurately determine a relative depth between measurement locations. The downhole probe includes a measurement unit for taking downhole measurements and a detachable anchor that can grip a wellbore wall to maintain a fixed location. The measurement unit may be moved relative to anchor between the measurement locations to unspool a tether coupled between the anchor and the measurement unit. The length of the tether unspooled may provide a more accurate indication of the relative distance between the measurement locations than surface-based measurements. The detachable anchor may be retrieved for deployment at additional measurement locations or may be abandoned in the wellbore.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 30, 2023
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom
  • Patent number: 11613950
    Abstract: A coring tool includes a coring bit to cut and detach a core sample from a subsurface formation formed in a borehole. The coring tool includes a pressure vessel that includes a core chamber to store the core sample at a pressure and a piston positioned adjacent to the core chamber. The pressure vessel includes a chamber adjacent to the piston and a gas reservoir to store a gas that expands as the gas is moved to a surface of the borehole. The pressure vessel includes a valve coupled to an inlet of the chamber and an outlet of the gas reservoir, wherein the gas is to flow into the chamber when the valve is open to move the piston to cause an increase in the pressure of the core chamber.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: March 28, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Donald Clifford Westacott, Christopher Michael Jones, Anthony Herman van Zuilekom
  • Patent number: 11603757
    Abstract: A test tool attached to test string comprising a fluid conduit is deployed to a test position within a wellbore. The deployment includes hydraulically isolating a portion of the wellbore proximate the test tool to form an isolation zone containing the test position. A fluid inflow test is performed within the isolation zone and an initial formation property and a fluid property are determined based on the fluid inflow test. A fluid injection test is performed within the isolation zone including applying an injection fluid through the test string into the isolation zone, wherein the flow rate or pressure of the injection fluid application is determined based, at least in part, on the at least one of the formation property and fluid property.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 14, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mark Anton Proett, Christopher Michael Jones, Michel Joseph LeBlanc, Anthony Herman van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11598206
    Abstract: This disclosure presents systems and processes to collect elemental composition of target fluid and solid material located downhole of a borehole. Waveguides can be utilized that include capillary optics to deliver emitted high energy into a container or a conduit and then to detect the high energy. A source waveguide can be used to emit the high energy into the target fluid and a detector waveguide can collect resulting measurements. Each waveguide can include a protective sheath and a pressure cap on the end of the capillary optics that are proximate the target fluid, to protect against abrasion and target fluid pressure. In other aspects, a pulsed neutron tool can be utilized in place of the waveguides to collect measurements. The collected measurements can be utilized to generate chemical signature results that can be utilized to determine the elemental composition of the target fluid or of the solid material.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: March 7, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Jeffrey James Crawford, Anthony Herman van Zulekom, Darren George Gascooke
  • Publication number: 20230054922
    Abstract: A method and system for disposing a fluid sampling tool into a wellbore at a first location, taking a first fluid sample with the fluid sampling tool, identifying a first asphaltene onset pressure (AOP) using the first fluid sample, and moving the fluid sampling tool to a second location in the wellbore. The method may further include taking a second fluid sample with the fluid sampling tool, identifying a second AOP at the second location in the wellbore, and forming an AOP map based at least on the first AOP and second AOP. The system may include a fluid sampling tool with one or more probes for injecting the one or more probes into a wellbore and taking a plurality of fluid samples from the wellbore and an information handling system.
    Type: Application
    Filed: July 12, 2022
    Publication date: February 23, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Rohin Naveena-Chandran, Anthony Herman VanZuilekom
  • Publication number: 20230058017
    Abstract: A downhole fluid sampling tool comprising one or more probes configured to take at least one fluid sample from the wellbore and perform a Saturates, Aromatics, Resins, Asphaltenes (SARA) analysis on the at least one fluid sample. Additionally, the downhole fluid sampling tool comprises an information handling system for developing a first remediation operation based at least in part on the first SARA analysis and performing the first remediation operation on the first fluid sample to form a first remediated fluid sample.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 23, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Rohin Naveena-Chandran, Anthony Herman VanZuilekom
  • Publication number: 20230054254
    Abstract: A method and system for disposing a fluid sampling tool into a wellbore, taking a plurality of fluid samples with the fluid sampling tool, identifying a plurality of asphaltene onset pressures (AOP) downhole based at the least on the plurality of fluid samples. The method may further comprise forming an AOP map from at least the plurality of AOPs, identifying a laboratory property from at least one of the plurality of fluid samples; and developing a relational model between at least one of the plurality of AOPs and the laboratory property. The system may include a fluid sampling tool with one or more probes for injecting the one or more probes into a wellbore and taking a plurality of fluid samples from the wellbore.
    Type: Application
    Filed: July 7, 2022
    Publication date: February 23, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Rohin Naveena-Chandran, Anthony Herman VanZuilekom
  • Patent number: 11572786
    Abstract: A downhole PVT tool for performing in-situ formation fluid phase behavior characterizations in a wellbore using pressure, volume, and temperature (PVT) measurements of the formation fluid while continuing to pump the formation fluids. The disclosed downhole PVT tool includes an intake mandrel and utilizes two individual pumps to split the formation fluid to perform PVT measurements during the fluid pump out. The downhole PVT tool, two-pump configuration permits a first pump to be used to pump formation fluid along a first flowpath and a second pump to be used to pump formation fluid along a second flowpath, with one or more sensors deployed along one of the flowpaths to perform fluid and/or gas phase behavior measurements to determine one or more properties of the formation fluid in-situ. The first pump may be utilized in the phase behavior analysis while the second pump simultaneously continues flow-through pumping of the formation fluid.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 7, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Marcus Ray Hudson
  • Patent number: 11555402
    Abstract: A downhole tool comprises at least one inlet and a first pump coupled to the at least one inlet via a first flow line. The first pump is to pump at a first pump rate to extract fluid via the at least one inlet from a subsurface formation in which a borehole is created and in which the downhole tool is to be positioned. A sample chamber is coupled to the inlet via a second flow line, and a second pump is coupled to the inlet via the second flow line. The second pump is to pump at a second pump rate to extract the fluid via the at least one inlet from the subsurface formation and for storage in the sample chamber. The first pump rate is greater than the second pump rate.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: January 17, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman van Zuilekom, Darren George Gascooke