Patents by Inventor Anthony J. Convertine

Anthony J. Convertine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10709791
    Abstract: Polymeric carriers for the delivery of therapeutic agents and methods for making and using the same. The polymeric carriers include copolymers, diblock copolymers, polymeric architectures that include the copolymers and diblock copolymers, and particles assemblies comprising the copolymers, diblock copolymers, and polymeric architectures that include the copolymers.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 14, 2020
    Assignee: University of Washington
    Inventors: Patrick S. Stayton, Anthony J. Convertine, Daniel M. Ratner, Debobrato Das, Selvi Srinivasan
  • Patent number: 10066043
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: September 4, 2018
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20180171056
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 21, 2018
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Publication number: 20180043029
    Abstract: Polymeric carriers for the delivery of therapeutic agents and methods for making and using the same. The polymeric carriers include copolymers, diblock copolymers, polymeric architectures that include the copolymers and diblock copolymers, and particles assemblies comprising the copolymers, diblock copolymers, and polymeric architectures that include the copolymers.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 15, 2018
    Applicant: University of Washington
    Inventors: Patrick S. Stayton, Anthony J. Convertine, Daniel M. Ratner, Debobrato Das, Selvi Srinivasan
  • Patent number: 9862792
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: January 9, 2018
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Publication number: 20170145141
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20170096517
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Application
    Filed: September 13, 2016
    Publication date: April 6, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Patent number: 9593169
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: March 14, 2017
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Patent number: 9476063
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 25, 2016
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Patent number: 9339558
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: May 17, 2016
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Robert W. Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20150238619
    Abstract: Provided herein are polymeric carriers suitable for the delivery of polynucleotides (e.g., oligonucleotides) and/or other therapeutic agents into a living cell.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 9006193
    Abstract: Provided herein are polymeric carriers suitable for the delivery of polynucleotides (e.g. oligonucleotides) and/or other therapeutic agents into a living cell.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 14, 2015
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Robert W. Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 8822213
    Abstract: A composition for delivering an agent to a cell, comprising a bispecific affinity reagent and a pH-responsive, membrane destabilizing polymer. The bispecific affinity reagent may include a first affinity reagent covalently linked to a second affinity reagent, wherein the first affinity reagent binds to a molecule on the surface of a cell, and the second affinity reagent binds to an intracellular target.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 2, 2014
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Robert W. Overell, Paul H. Johnson
  • Publication number: 20110305660
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective co-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Application
    Filed: December 8, 2009
    Publication date: December 15, 2011
    Applicants: PhaseRx, Inc., University of Washington
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20110281354
    Abstract: A composition for delivering an agent to a cell, comprising a bispecific affinity reagent and a pH-responsive, membrane destabilizing polymer. The bispecific affinity reagent may include a first affinity reagent covalently linked to a second affinity reagent, wherein the first affinity reagent binds to a molecule on the surface of a cell, and the second affinity reagent binds to an intracellular target.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 17, 2011
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Robert W. Overell, Paul H. Johnson
  • Publication number: 20110143435
    Abstract: Provided herein are polymeric carriers suitable for the delivery of polynucleotides (e.g. oligonucleotides) and/or other therapeutic agents into a living cell.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 16, 2011
    Applicants: UNIVERSITY OF WASHINGTON, PHASERX, INC.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Robert W. Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20110143434
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 16, 2011
    Applicants: UNIVERSITY OF WASHINGTON, PHASERX, INC.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Publication number: 20110142951
    Abstract: Composition comprising a polymeric micelle and an associated polynucleotide.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 16, 2011
    Applicants: UNIVERSITY OF WASHINGTON, PHASERX, INC.
    Inventors: Paul H. Johnson, Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Robert W. Overell, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20110129921
    Abstract: Polymer bioconjugate having a RNAi agent covalently coupled to the alpha or omega end of a pH-dependent membrane-destabilizing polymer.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 2, 2011
    Applicants: UNIVERSITY OF WASHINGTON, PHASERX, INC.
    Inventors: Paul H. Johnson, Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Chen-Chang Lee, Robert W. Overell, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De