Patents by Inventor Anthony J. DeMaria

Anthony J. DeMaria has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8942270
    Abstract: A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 27, 2015
    Assignee: Coherent, Inc.
    Inventor: Anthony J. DeMaria
  • Patent number: 8848758
    Abstract: A gas-discharge waveguide CO2 laser has a Z-shaped folded waveguide formed by three ceramic tubes. Ends of the adjacent tubes are shaped and fitted together to form a common aperture. The tubes are held fitted together by spaced-apart parallel discharge electrodes. Four minors are arranged to form a laser-resonator having a longitudinal axis extending through the tubes.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: September 30, 2014
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, R. Russel Austin
  • Publication number: 20140064318
    Abstract: A gas-discharge waveguide CO2 laser has a Z-shaped folded waveguide formed by three ceramic tubes. Ends of the adjacent tubes are shaped and fitted together to form a common aperture. The tubes are held fitted together by spaced-apart parallel discharge electrodes. Four minors are arranged to form a laser-resonator having a longitudinal axis extending through the tubes.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: COHERENT, INC.
    Inventors: Anthony J. DEMARIA, R. Russel AUSTIN
  • Patent number: 8611391
    Abstract: A gas-discharge waveguide CO2 laser has a Z-shaped folded waveguide formed by three ceramic tubes. Ends of the adjacent tubes are shaped and fitted together to form a common aperture. The tubes are held fitted together by spaced-apart parallel discharge electrodes. Four mirrors are arranged to form a laser-resonator having a longitudinal axis extending through the tubes.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 17, 2013
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, R. Russel Austin
  • Publication number: 20120281728
    Abstract: A gas-discharge waveguide CO2 laser has a Z-shaped folded waveguide formed by three ceramic tubes. Ends of the adjacent tubes are shaped and fitted together to form a common aperture. The tubes are held fitted together by spaced-apart parallel discharge electrodes. Four mirrors are arranged to form a laser-resonator having a longitudinal axis extending through the tubes.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Applicant: Coherent, Inc.
    Inventors: Anthony J. DEMARIA, R. Russel AUSTIN
  • Publication number: 20090213885
    Abstract: A gas includes a housing having a symmetrical arrangement of upper and lower cooling members for removing heat generated in a gas-discharge excited by an electrode assembly. The electrode assembly is clamped between the cooling members and is itself essentially symmetrically arranged. The cooling members and the electrode assembly are mechanically isolated in the housing by a surrounding diaphragm-like arrangement that connects the cooling members to side-walls of the housing. An RF power-supply for supplying the electrode assembly is mounted on one of the sidewalls to avoid disturbing the symmetry of the cooling and electrode arrangements.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Inventor: Anthony J. DeMaria
  • Patent number: 7411989
    Abstract: A CO2 laser has a resonator mirror that oscillates about an axis perpendicular to the resonator axis through an angular range of oscillation sufficient that the resonator is only able to deliver radiation for a fraction of an oscillation period of the mirror. In one example of the laser, the oscillating mirror is an end-mirror of the resonator. In another example, the oscillating mirror is a fold mirror of the resonator.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: August 12, 2008
    Assignee: Coherent, Inc.
    Inventors: Luis A. Spinelli, Anthony J. DeMaria, Vernon Seguin
  • Publication number: 20080144675
    Abstract: A CO2 laser has a resonator mirror that oscillates about an axis perpendicular to the resonator axis through an angular range of oscillation sufficient that the resonator is only able to deliver radiation for a fraction of an oscillation period of the mirror. In one example of the laser, the oscillating mirror is an end-mirror of the resonator. In another example, the oscillating mirror is a fold mirror of the resonator.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 19, 2008
    Inventors: Luis A. Spinelli, Anthony J. DeMaria, Vernon Seguin
  • Patent number: 7327769
    Abstract: A CO2 laser reference oscillator (RO) can provide injection seeding to a Q-switched (QS) or Q-switched cavity dumped (QSCD) CO2 laser, where the output frequency of the RO laser is locked to the peak of the laser line by the use of appropriate electronics to dither one of the resonator mirrors of the reference oscillator. This injected radiation seeds the radiation building up within the Q-switched laser cavity, such that the oscillating frequency favors the wavelength of the injected radiation. An electronic feedback control circuit can be used to lock an axial mode of the Q-switched laser to line center. The change in build-up time of the pulses within the QS laser can be used to maintain cavity length at a value that enables oscillating at the peak of the same laser line that is injected into QS laser.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: February 5, 2008
    Assignee: Coherent, Inc.
    Inventors: Robert Henschke, Joel Fontanella, Anthony J. DeMaria
  • Patent number: 7263116
    Abstract: A slab laser includes two elongated electrodes arranged spaced apart and face-to-face. Either one or two slabs of a solid dielectric material extend along the length of the electrodes between the electrodes. A discharge gap is formed either between one of the electrodes and one dielectric slab, or between two dielectric slabs. The discharge gap is filled with lasing gas. A pair of mirrors is configured and arranged to define a laser resonator extending through the gap. An RF potential is applied across the electrodes creating a gas discharge in the gap, and causing laser radiation to circulate in the resonator. Inserting dielectric material between the electrodes increases the resistance-capacitance (RC) time constant of the discharge structure compared with the RC time constant in the absence of dielectric material.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: August 28, 2007
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Phillip J. Gardner, Anthony J. DeMaria, Vernon Seguin, John T. Kennedy
  • Patent number: 7260134
    Abstract: An slab CO2 laser includes spaced-apart elongated slab electrodes. A lasing gas fills a discharge gap between the electrodes. An RF power supply is connected across the electrodes and sustains an electrical discharge in the lasing gas in the discharge gap. Either one or two ceramic inserts occupy a portion of width of the electrodes and in contact with the electrodes. A discharge gap is formed between the portions of the width of the electrodes not occupied by the insert or inserts. Provision of the ceramic insert or inserts increases the resistance-capacitance (RC) time constant of the electrode impedance by increasing the capacitive component of the time constant. This hinders the formation of arcs in the discharge, which, in turn enables the inventive laser to operate with higher excitation power or higher lasing-gas pressure than would be possible without the dielectric insert. The ceramic insert also decreases the difference in impedance of the electrodes with and without a discharge.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 21, 2007
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Phillip J. Gardner, Anthony J. DeMaria, Vernon Seguin, John T. Kennedy
  • Patent number: 7199330
    Abstract: Multiple laser beams, each having a shape such as a Gaussian profile, can be incoherently combined to obtain a shaped, flat top laser beam. The combined laser beams can provide power levels necessary for material processing applications such as annealing, drilling, and cutting, while minimizing the amount of unused power. The lasers can be positioned in an array in order to shape the flat top beam, and can be staggered in position where necessary to give each output beam an equal beam path length. The relative frequencies and/or powers of the lasers can be adjusted to control the flatness and stability of the incoherently combined beam.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: April 3, 2007
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, Leon A. Newman, Vernon Sequin
  • Patent number: 7058093
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 6, 2006
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. DeMaria, Leon A. Newman, Robert Henschke
  • Patent number: 6826204
    Abstract: A simultaneously super pulsed Q-switched CO2 laser system for material processing is disclosed. The system comprises sealed-off folded waveguides with folded mirrors that are thin film coated to select the output wavelength of the laser. The system also comprises a plurality of reflective devices defining a cavity; a gain medium positioned within the cavity for generating a laser beam; a cavity loss modulator for modulating the laser beam, generating thereby one or more laser pulses; a pulsed signal generation system connected to the cavity loss modulator for delivering pulsed signals to the cavity loss modulator thereby controlling the state of optical loss within the cavity; a control unit connected to the pulsed signal generation system for controlling the pulsed signal generation system; and a pulse clipping circuit receptive of a portion of the laser beam and connected to the pulsed signal generation system for truncating a part of the laser pulses.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: November 30, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Patent number: 6798816
    Abstract: A folded waveguide CO2 laser includes a plurality of waveguides arranged in a zigzag pattern with ends thereof overlapping. The laser includes a resonator having an axis extending through the plurality of waveguides. At least a portion of at least one of the waveguides has a uniform minimum width selected cooperative with the height of the waveguide and the laser wavelength such that the resonator can oscillate in only a single mode. At least a portion of one of the waveguides is tapered such that its width increases in one direction along the resonator axis. Tapering one or more of the waveguides provides that the total waveguide area and potential power output of the laser is greater than that of a zigzag arrangement of waveguides having the same total length waveguides each having a uniform width equal to the minimum width of the waveguide in the tapered waveguide arrangement.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, Vernon A. Seguin, Lanny Laughman
  • Patent number: 6788722
    Abstract: The above discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by a laser of the present invention. In accordance with the present invention the laser comprises a housing defining a plurality of compartments therein, a folded waveguide disposed within the housing, the folded waveguide defining a plurality of channels having a substantially rectangular cross section for guiding a laser beam, a plurality of electrodes disposed in the plurality of compartments and juxtaposed along opposite surfaces of the waveguide and at least one power supply connected to the plurality of electrodes. The channels having a prescribed width to height ratio for a prescribed channel length for a given Fresnel number. At least one optical housing is provided. The optical housing is mounted to the laser housing, the optical housing including a plurality of beam turning mechanisms disposed within a plurality of compartments accessible for adjusting the beam turning mechanisms.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 7, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Leon A. Newman, Anthony J. DeMaria
  • Publication number: 20040146075
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 29, 2004
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Publication number: 20040076210
    Abstract: A folded waveguide CO2 laser includes a plurality of waveguides arranged in a zigzag pattern with ends thereof overlapping. The laser includes a resonator having an axis extending through the plurality of waveguides. At least a portion of at least one of the waveguides has a uniform minimum width selected cooperative with the height of the waveguide and the laser wavelength such that the resonator can oscillate in only a single mode. At least a portion of one of the waveguides is tapered such that its width increases in one direction along the resonator axis. Tapering one or more of the waveguides provides that the total waveguide area and potential power output of the laser is greater than that of a zigzag arrangement of waveguides having the same total length waveguides each having a uniform width equal to the minimum width of the waveguide in the tapered waveguide arrangement.
    Type: Application
    Filed: October 21, 2002
    Publication date: April 22, 2004
    Inventors: Anthony J. DeMaria, Vernon A. Seguin, Lanny Laughman
  • Patent number: 6697408
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: February 24, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Publication number: 20030156615
    Abstract: A simultaneously super pulsed Q-switched CO2 laser system for material processing is disclosed. The system comprises sealed-off folded waveguides with folded mirrors that are thin film coated to select the output wavelength of the laser. The system also comprises a plurality of reflective devices defining a cavity; a gain medium positioned within the cavity for generating a laser beam; a cavity loss modulator for modulating the laser beam, generating thereby one or more laser pulses; a pulsed signal generation system connected to the cavity loss modulator for delivering pulsed signals to the cavity loss modulator thereby controlling the state of optical loss within the cavity; a control unit connected to the pulsed signal generation system for controlling the pulsed signal generation system; and a pulse clipping circuit receptive of a portion of the laser beam and connected to the pulsed signal generation system for truncating a part of the laser pulses.
    Type: Application
    Filed: April 4, 2002
    Publication date: August 21, 2003
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke