Patents by Inventor Anthony J. Spahr

Anthony J. Spahr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11889269
    Abstract: A cochlear implant system includes a cochlear implant configured to be implanted within a patient and a sound processor communicatively coupled to the cochlear implant. The sound processor detects a unique identifier of the cochlear implant and establishes, by way of a network, an active network link with a remote computing system located remotely from the cochlear implant system. The sound processor transmits the unique identifier of the cochlear implant to the remote computing system over the active network link and, in response, receives data representative of a sound processing program associated with the cochlear implant from the remote computing system over the active network link. The sound processor stores the received data representative of the sound processing program on a local storage facility associated with the sound processor. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 30, 2024
    Assignee: Advanced Bionics AG
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Patent number: 11878168
    Abstract: An illustrative cochlear implant system is disclosed herein. The cochlear implant system comprises a microphone assembly including a microphone and a retention device configured to hold the microphone near an entrance to an ear canal of an ear of a recipient. The cochlear implant system further comprises an off-the-ear (OTE) sound processor that includes a housing configured to be worn off the ear of the recipient and further configured to physically attach to the microphone assembly so as to allow the microphone assembly to be worn off the ear when the microphone assembly is not being worn at the ear using the retention device. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: January 23, 2024
    Assignee: Advanced Bionics AG
    Inventors: Andreas Benedikt Brehm, James George Elcoate Smith, Anthony J. Spahr
  • Patent number: 11771903
    Abstract: An apparatus external to a patient and communicatively coupled to an implant within the patient is disclosed. The apparatus identifies a tentative stimulation parameter adjustment constraint and an absolute stimulation parameter adjustment constraint for a stimulation parameter associated with the implant. The apparatus also determines an impedance of an electrode implanted within the patient and coupled with the implant. Based on the impedance of the electrode, the apparatus automatically adjusts the stimulation parameter within a range between a present value and a first value defined by the tentative stimulation parameter adjustment constraint. Additionally, based on user input manually provided by the patient, the apparatus further adjusts the stimulation parameter within a range between the first value and a second value beyond the first value and defined by the absolute stimulation parameter adjustment constraint. Corresponding apparatuses, systems, and methods are also disclosed.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: October 3, 2023
    Assignee: Advanced Bionics AG
    Inventors: Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mark B. Downing, Leonid M. Litvak, Amy Stein
  • Publication number: 20220355109
    Abstract: An illustrative cochlear implant system is disclosed herein. The cochlear implant system comprises a microphone assembly including a microphone and a retention device configured to hold the microphone near an entrance to an ear canal of an ear of a recipient. The cochlear implant system further comprises an off-the-ear (OTE) sound processor that includes a housing configured to be worn off the ear of the recipient and further configured to physically attach to the microphone assembly so as to allow the microphone assembly to be worn off the ear when the microphone assembly is not being worn at the ear using the retention device. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Andreas Benedikt Brehm, James George Elcoate Smith, Anthony J. Spahr
  • Publication number: 20220330844
    Abstract: An illustrative system includes a stimulation device configured to apply stimulation to a recipient, a sensing device configured to detect a physiological condition of the recipient, and a processing unit communicatively coupled to the stimulation device and the sensing device. The processing unit determines a stimulation strategy that is customized to the recipient and includes stimulation frames and stimulation gaps. The processing unit then directs the stimulation device to apply the stimulation to the recipient in accordance with the stimulation strategy by applying the stimulation only during time that corresponds to the stimulation frames. The processing unit also directs the sensing device to detect the physiological condition of the recipient in accordance with the stimulation strategy by detecting only during time that corresponds to the stimulation gaps. Based on the detected physiological condition, the processing unit performs an action.
    Type: Application
    Filed: October 23, 2020
    Publication date: October 20, 2022
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Hannah A. Glick, Kanthaiah Koka, Chen Chen, Anthony J. Spahr, Jason Galster, Dean Swan
  • Patent number: 11458315
    Abstract: An exemplary cochlear implant system for use by a recipient includes a microphone assembly and an off-the-ear (OTE) sound processor communicatively coupled with the microphone assembly. The microphone assembly includes a microphone configured to capture an audio signal representative of sound presented to the recipient, and a retention device configured to hold the microphone in place near an entrance to an ear canal of an ear of the recipient. The OTE sound processor includes a housing configured to be worn on a head of the recipient at a location that is off the ear of the recipient, and electronic circuitry included within the housing. The electronic circuitry is configured to generate stimulation parameters that, when transmitted to a cochlear implant implanted within the recipient, direct the cochlear implant to apply electrical stimulation representative of the captured audio signal to the recipient. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: July 29, 2018
    Date of Patent: October 4, 2022
    Assignee: Advanced Bionics AG
    Inventors: Andreas Benedikt Brehm, James George Elcoate Smith, Anthony J. Spahr
  • Publication number: 20210402187
    Abstract: An apparatus external to a patient and communicatively coupled to an implant within the patient is disclosed. The apparatus identifies a tentative stimulation parameter adjustment constraint and an absolute stimulation parameter adjustment constraint for a stimulation parameter associated with the implant. The apparatus also determines an impedance of an electrode implanted within the patient and coupled with the implant. Based on the impedance of the electrode, the apparatus automatically adjusts the stimulation parameter within a range between a present value and a first value defined by the tentative stimulation parameter adjustment constraint. Additionally, based on user input manually provided by the patient, the apparatus further adjusts the stimulation parameter within a range between the first value and a second value beyond the first value and defined by the absolute stimulation parameter adjustment constraint. Corresponding apparatuses, systems, and methods are also disclosed.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mark B. Downing, Leonid M. Litvak, Amy Stein
  • Publication number: 20210337326
    Abstract: An exemplary cochlear implant system for use by a recipient includes a microphone assembly and an off-the-ear (OTE) sound processor communicatively coupled with the microphone assembly. The microphone assembly includes a microphone configured to capture an audio signal representative of sound presented to the recipient, and a retention device configured to hold the microphone in place near an entrance to an ear canal of an ear of the recipient. The OTE sound processor includes a housing configured to be worn on a head of the recipient at a location that is off the ear of the recipient, and electronic circuitry included within the housing. The electronic circuitry is configured to generate stimulation parameters that, when transmitted to a cochlear implant implanted within the recipient, direct the cochlear implant to apply electrical stimulation representative of the captured audio signal to the recipient. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: July 29, 2018
    Publication date: October 28, 2021
    Inventors: Andreas Benedikt Brehm, James George Elcoate Smith, Anthony J. Spahr
  • Patent number: 11135430
    Abstract: An apparatus associated with a cochlear implant system used by a patient directs a cochlear implant included within the cochlear implant system and implanted within the patient to generate electrical stimulation current at a predetermined current level. The apparatus further directs the cochlear implant to apply the electrical stimulation current to the patient by way of an electrode coupled with the cochlear implant, and to measure a voltage level associated with the electrode while the electrical stimulation current is applied to the patient by way of the electrode. Based on the predetermined current level and the measured voltage level, the apparatus determines an impedance of the electrode. Based on the determined electrode impedance and in accordance with a predetermined stimulation parameter adjustment constraint, the apparatus automatically adjusts a stimulation parameter associated with the cochlear implant system. Additional apparatuses and corresponding methods are also disclosed.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 5, 2021
    Assignee: Advanced Bionics AG
    Inventors: Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mary Elizabeth Bush, Mark B. Downing, Leonid M. Litvak, Amy Stein
  • Publication number: 20210099814
    Abstract: A cochlear implant system includes a cochlear implant configured to be implanted within a patient and a sound processor communicatively coupled to the cochlear implant. The sound processor detects a unique identifier of the cochlear implant and establishes, by way of a network, an active network link with a remote computing system located remotely from the cochlear implant system. The sound processor transmits the unique identifier of the cochlear implant to the remote computing system over the active network link and, in response, receives data representative of a sound processing program associated with the cochlear implant from the remote computing system over the active network link. The sound processor stores the received data representative of the sound processing program on a local storage facility associated with the sound processor. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 1, 2021
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Patent number: 10904680
    Abstract: A sound processor assembly included within a cochlear implant system includes a sound processor and a battery assembly. The sound processor includes a physical computing device configured to direct operation of a cochlear implant in accordance with a sound processing program associated with a cochlear implant implanted within a patient. The battery assembly includes an electric battery configured to provide electrical power to the sound processor, as well as a storage facility configured to store the sound processing program associated with the cochlear implant. The storage facility is integrated with the electric battery within the battery assembly. The sound processor assembly also includes a bidirectional communication interface communicatively coupling the battery assembly to the sound processor to allow the sound processor to store data to, and to retrieve stored data from, the storage facility of the battery assembly by way of the bidirectional communication interface.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 26, 2021
    Assignee: Advanced Bionics AG
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Publication number: 20200054877
    Abstract: An apparatus associated with a cochlear implant system used by a patient directs a cochlear implant included within the cochlear implant system and implanted within the patient to generate electrical stimulation current at a predetermined current level. The apparatus further directs the cochlear implant to apply the electrical stimulation current to the patient by way of an electrode coupled with the cochlear implant, and to measure a voltage level associated with the electrode while the electrical stimulation current is applied to the patient by way of the electrode. Based on the predetermined current level and the measured voltage level, the apparatus determines an impedance of the electrode. Based on the determined electrode impedance and in accordance with a predetermined stimulation parameter adjustment constraint, the apparatus automatically adjusts a stimulation parameter associated with the cochlear implant system. Additional apparatuses and corresponding methods are also disclosed.
    Type: Application
    Filed: February 22, 2018
    Publication date: February 20, 2020
    Inventors: Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mary Elizabeth Bush, Mark B. Downing, Leonid M. Litvak, Amy Stein
  • Publication number: 20180288536
    Abstract: A sound processor assembly included within a cochlear implant system includes a sound processor and a battery assembly. The sound processor includes a physical computing device configured to direct operation of a cochlear implant in accordance with a sound processing program associated with a cochlear implant implanted within a patient. The battery assembly includes an electric battery configured to provide electrical power to the sound processor, as well as a storage facility configured to store the sound processing program associated with the cochlear implant. The storage facility is integrated with the electric battery within the battery assembly. The sound processor assembly also includes a bidirectional communication interface communicatively coupling the battery assembly to the sound processor to allow the sound processor to store data to, and to retrieve stored data from, the storage facility of the battery assembly by way of the bidirectional communication interface.
    Type: Application
    Filed: February 22, 2018
    Publication date: October 4, 2018
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr
  • Patent number: 10052483
    Abstract: A cochlear implant sound processor including processor apparatus that, in response to being paired with a cochlear implant, converts audio signals from a microphone into stimulation data and transfer the stimulation data to cochlear implant, and in response to a failure to detect the cochlear implant, transfers the audio signals to a contralateral sound processor. Systems and methods are also disclosed.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: August 21, 2018
    Assignee: Advanced Bionics AG
    Inventors: Anthony J. Spahr, Erin E. Castioni
  • Publication number: 20170312511
    Abstract: A cochlear implant sound processor including processor apparatus that, in response to being paired with a cochlear implant, converts audio signals from a microphone into stimulation data and transfer the stimulation data to cochlear implant, and in response to a failure to detect the cochlear implant, transfers the audio signals to a contralateral sound processor. Systems and methods are also disclosed.
    Type: Application
    Filed: October 28, 2014
    Publication date: November 2, 2017
    Inventors: Anthony J. SPAHR, Erin E. CASTIONI
  • Patent number: 9717905
    Abstract: An exemplary backup sound processor maintains data representative of a first set of sound processing programs associated with a first memory slot and with a plurality of cochlear implants, maintains data representative of a second set of sound processing programs associated with the second memory slot and with the plurality of cochlear implants, and detects a communicative coupling of the sound processor to a cochlear implant included in the plurality of cochlear implants. In response, the backup sound processor 1) determines an identifier unique to the cochlear implant, 2) determines that a program switch associated with the sound processor is in a first program switch position, 3) queries the first set of sound processing programs to identify a sound processing program included in the first set of sound processing programs that is associated with the determined identifier, and 4) operates in accordance with the identified sound processing program.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 1, 2017
    Assignee: Advanced Bionics AG
    Inventor: Anthony J. Spahr
  • Publication number: 20160243360
    Abstract: An exemplary backup sound processor maintains data representative of a first set of sound processing programs associated with a first memory slot and with a plurality of cochlear implants, maintains data representative of a second set of sound processing programs associated with the second memory slot and with the plurality of cochlear implants, and detects a communicative coupling of the sound processor to a cochlear implant included in the plurality of cochlear implants. In response, the backup sound processor 1) determines an identifier unique to the cochlear implant, 2) determines that a program switch associated with the sound processor is in a first program switch position, 3) queries the first set of sound processing programs to identify a sound processing program included in the first set of sound processing programs that is associated with the determined identifier, and 4) operates in accordance with the identified sound processing program.
    Type: Application
    Filed: September 30, 2013
    Publication date: August 25, 2016
    Inventor: Anthony J. Spahr
  • Publication number: 20150297890
    Abstract: An exemplary system includes a detection facility configured to 1) receive an acoustic signal transmitted by a middle ear analyzer and 2) detect a sound level of the acoustic signal, and a processing facility configured to 1) use the sound level of the acoustic signal to control a current level of electrical stimulation applied by a cochlear implant system by way of a first set of one or more electrodes implanted within a patient, 2) synchronize the middle ear analyzer with the cochlear implant system in accordance with a first mapping data set during a first stapedius reflex measurement session, 3) identify a current level of the electrical stimulation at which the stapedius reflex occurs, and 4) automatically generate a second mapping data set based on the identified current level for use during a second stapedius reflex measurement session subsequent to the first stapedius reflex measurement session.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 22, 2015
    Applicant: Advance Bionics AG
    Inventors: Anthony J. Spahr, Leonid M. Litvak, Kinuko Masaki, Charles C. Finley
  • Patent number: 8768475
    Abstract: An exemplary system includes 1) a sound processor configured to divide an audio signal into a plurality of analysis channels, wherein each of the analysis channels contains information corresponding to a distinct frequency band of the audio signal, and wherein one of the analysis channels contains fine structure information corresponding to the audio signal, and 2) an implantable cochlear stimulator configured to generate electrical stimulation in accordance with the information contained within each of the analysis channels, apply the electrical stimulation to at least one stimulation site within a patient via a plurality of stimulation channels, each of the stimulation channels corresponding to one of the analysis channels and configured to convey the information contained within the analysis channels to the patient via at least one electrode, and at least partially isolate one of the stimulation channels from a rest of the stimulation channels.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 1, 2014
    Assignee: Advanced Bionics, LLC
    Inventors: Leonid M. Litvak, Aniket Saoji, Anthony J. Spahr, Edward H. Overstreet
  • Publication number: 20130289656
    Abstract: An exemplary system includes 1) a sound processor configured to divide an audio signal into a plurality of analysis channels, wherein each of the analysis channels contains information corresponding to a distinct frequency band of the audio signal, and wherein one of the analysis channels contains fine structure information corresponding to the audio signal, and 2) an implantable cochlear stimulator configured to generate electrical stimulation in accordance with the information contained within each of the analysis channels, apply the electrical stimulation to at least one stimulation site within a patient via a plurality of stimulation channels, each of the stimulation channels corresponding to one of the analysis channels and configured to convey the information contained within the analysis channels to the patient via at least one electrode, and at least partially isolate one of the stimulation channels from a rest of the stimulation channels.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Inventors: Leonid M. Litvak, Aniket Saoji, Anthony J. Spahr, Edward H. Overstreet