Patents by Inventor Anthony James Vergamini
Anthony James Vergamini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10727608Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: GrantFiled: December 5, 2019Date of Patent: July 28, 2020Assignee: INTELLIAN TECHNOLOGIES, INC.Inventors: Roy J. Paleta, Jr., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20200112105Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: ApplicationFiled: December 5, 2019Publication date: April 9, 2020Inventors: ROY J. PALETA, JR., DUNCAN MCCOIG, MITCHELL L. AHRENDT, GRIFFIN KEITH GOTHARD, ROBERT FRANCIS MEEHAN, FRANCISCO TORRES, ANTHONY JAMES VERGAMINI, COLIN STRACHAN, ANDREW LUCAS
-
Patent number: 10530063Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: GrantFiled: December 17, 2018Date of Patent: January 7, 2020Assignee: SPEEDCAST INTERNATIONAL LTDInventors: Roy J. Paleta, Jr., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20190115669Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: ApplicationFiled: December 17, 2018Publication date: April 18, 2019Inventors: ROY J. PALETA, JR., DUNCAN MCCOIG, MITCHELL L. AHRENDT, GRIFFIN KEITH GOTHARD, ROBERT FRANCIS MEEHAN, FRANCISCO TORRES, ANTHONY JAMES VERGAMINI, COLIN STRACHAN, ANDREW LUCAS
-
Patent number: 10193234Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: GrantFiled: May 7, 2015Date of Patent: January 29, 2019Assignee: SPEEDCAST INTERNATIONAL LIMITEDInventors: Roy J. Paleta, Jr., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Patent number: 10014589Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna system includes a main reflector, a strut assembly coupled to the main reflector defining an antenna feed receiving area spaced from the main reflector, and a subreflector carried by the strut assembly and also spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is reflective for both a first frequency band and a second frequency band and transmissive for a third frequency band. First and second antenna feeds are arranged in a coaxial relationship adjacent the main reflector and directed toward the subreflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed at the antenna feed receiving area and directed towards the subreflector and the main reflector. The third antenna feed is for the third frequency band.Type: GrantFiled: May 7, 2015Date of Patent: July 3, 2018Assignee: SPEEDCAST INTERNATIONAL LIMITEDInventors: Roy J Paleta, Jr., Duncan McCoig, Mitchell L Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Patent number: 9859621Abstract: An antenna assembly includes a main reflector, and a subreflector spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is reflective for a first frequency band and transmissive for both a second frequency band and a third frequency band. A first antenna feed is adjacent the main reflector and is directed toward the subreflector. The first antenna feed is for the first frequency band. The second and third antenna feeds are arranged in a coaxial relationship and are directed toward the main reflector with the subreflector therebetween. The second and third antenna feeds are for the second and third frequencies, respectively.Type: GrantFiled: January 29, 2015Date of Patent: January 2, 2018Assignee: SPEEDCAST INTERNATIONAL LTDInventors: Roy J. Paleta, Jr., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Patent number: 9685712Abstract: An antenna assembly includes a main reflector, and a subreflector spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is transmissive for a first frequency band and reflective for both a second frequency band and a third frequency band. A first antenna feed is adjacent the subreflector and is directed toward the main reflector. The first antenna feed is for the first frequency band. Second and third antenna feeds are arranged in a coaxial relationship adjacent the main reflector and are directed toward the subreflector. The second and third antenna feeds are for the second and third frequency bands, respectively.Type: GrantFiled: February 18, 2015Date of Patent: June 20, 2017Inventors: Roy J Paleta, Jr., Duncan McCoig, Mitchell L Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20160226150Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna assembly includes a main reflector, and first and second antenna feeds arranged in a coaxial relationship and directed toward the main reflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed through a medial opening in a center of the main reflector, with the third antenna feed directed towards the first and second antenna feeds. The third antenna feed is for a third frequency band. A subreflector is positioned between the main reflector and the first and second antenna feeds. The subreflector includes a frequency selective surface (FSS) material that is reflective for the third frequency band and transmissive for both the first and second frequency bands.Type: ApplicationFiled: May 7, 2015Publication date: August 4, 2016Inventors: Roy J. Paleta, JR., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20160226153Abstract: An antenna assembly includes a main reflector, and a subreflector spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is transmissive for a first frequency band and reflective for both a second frequency band and a third frequency band. A first antenna feed is adjacent the subreflector and is directed toward the main reflector. The first antenna feed is for the first frequency band. Second and third antenna feeds are arranged in a coaxial relationship adjacent the main reflector and are directed toward the subreflector. The second and third antenna feeds are for the second and third frequency bands, respectively.Type: ApplicationFiled: February 18, 2015Publication date: August 4, 2016Inventors: Roy J. Paleta, JR., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20160226152Abstract: An antenna assembly includes a main reflector, and a subreflector spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is reflective for a first frequency band and transmissive for both a second frequency band and a third frequency band. A first antenna feed is adjacent the main reflector and is directed toward the subreflector. The first antenna feed is for the first frequency band. The second and third antenna feeds are arranged in a coaxial relationship and are directed toward the main reflector with the subreflector therebetween. The second and third antenna feeds are for the second and third frequencies, respectively.Type: ApplicationFiled: January 29, 2015Publication date: August 4, 2016Inventors: ROY J PALETA, JR., Duncan McCoig, Mitchell L. Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas
-
Publication number: 20160226151Abstract: A method for upgrading a dual-band antenna assembly to a tri-band antenna assembly is provided. The dual-band antenna system includes a main reflector, a strut assembly coupled to the main reflector defining an antenna feed receiving area spaced from the main reflector, and a subreflector carried by the strut assembly and also spaced from the main reflector. The subreflector includes a frequency selective surface (FSS) material that is reflective for both a first frequency band and a second frequency band and transmissive for a third frequency band. First and second antenna feeds are arranged in a coaxial relationship adjacent the main reflector and directed toward the subreflector. The first and second antenna feeds are for first and second frequency bands, respectively. The method includes positioning a third antenna feed at the antenna feed receiving area and directed towards the subreflector and the main reflector. The third antenna feed is for the third frequency band.Type: ApplicationFiled: May 7, 2015Publication date: August 4, 2016Inventors: ROY J PALETA JR, Duncan McCoig, Mitchell L Ahrendt, Griffin Keith Gothard, Robert Francis Meehan, Francisco Torres, Anthony James Vergamini, Colin Strachan, Andrew Lucas