Patents by Inventor Anthony Joseph Vinciquerra

Anthony Joseph Vinciquerra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260687
    Abstract: Methods for manufacturing dual phase soft magnetic components include combining a plurality of soft ferromagnetic particles with a plurality of paramagnetic particles to form a component structure, wherein the plurality of soft ferromagnetic particles each comprise an electrically insulative coating, and, heat treating the component structure to consolidate the plurality of soft ferromagnetic particles with the plurality of paramagnetic particles.
    Type: Application
    Filed: February 14, 2022
    Publication date: August 17, 2023
    Inventors: Wanming Zhang, Ananda Barua, Shenyan Huang, Changjie Sun, Vandana Prabhakar Rallabandi, Anthony Joseph Vinciquerra, Min Zou
  • Publication number: 20230029806
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 2, 2023
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Patent number: 11511491
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 29, 2022
    Assignee: General Electric Company
    Inventors: Voramon Supatarawanich Dheeradhada, Natarajan Chennimalai Kumar, Vipul Kumar Gupta, Laura Dial, Anthony Joseph Vinciquerra, Timothy Hanlon
  • Patent number: 11472115
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Vipul Kumar Gupta, Natarajan Chennimalai Kumar, Anthony Joseph Vinciquerra, Laura Cerully Dial, Voramon Supatarawanich Dheeradhada, Timothy Hanlon, Lembit Salasoo, Xiaohu Ping, Subhrajit Roychowdhury, Justin John Gambone
  • Publication number: 20220001603
    Abstract: A method for fabricating a component of with an additive manufacturing system include entraining a first portion of first material particles in an airflow generated by a vacuum source and engaging the first portion of the first material particles against an air permeable screen. The first portion of the first material particles is deposited onto a build platform. The method also includes entraining a second portion of second material particles in the airflow and engaging the second portion of the second material particles against the air permeable screen. The second portion of the second material particles is deposited onto the build platform. An energy source transfers heat to at least a portion of at least one of the first portion of the first material particles or the second portion of the second material particles to facilitate consolidating material particles to fabricate the component.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Applicant: General Electric Company
    Inventors: Scott Michael Oppenheimer, Anthony Joseph Vinciquerra, Laura Cerully Dial
  • Patent number: 11148358
    Abstract: A method for fabricating a component of with an additive manufacturing system include entraining a first portion of first material particles in an airflow generated by a vacuum source and engaging the first portion of the first material particles against an air permeable screen. The first portion of the first material particles is deposited onto a build platform. The method also includes entraining a second portion of second material particles in the airflow and engaging the second portion of the second material particles against the air permeable screen. The second portion of the second material particles is deposited onto the build platform. An energy source transfers heat to at least a portion of at least one of the first portion of the first material particles or the second portion of the second material particles to facilitate consolidating material particles to fabricate the component.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Scott Michael Oppenheimer, Anthony Joseph Vinciquerra, Laura Cerully Dial
  • Patent number: 10997187
    Abstract: A system for querying a federated data store includes a metadata knowledge graph describing the contents and relationships among one or more underlying data stores, an interactive user interface receiving requests from a data consumer, a predefined constrainable query (‘nodegroup’) store containing predefined constrainable queries that define data subsets of interest across one or more of the underlying data repositories, a knowledge-driven querying layer generating and executing queries against the federated data store and merging responsive results, a scalable analytic execution layer receiving the search results from the federated data store and applying machine learning/artificial intelligence techniques to analyze the results, and a user interface presenting visualizations of raw or analyzed results to the consumer. A method and a non-transitory computer-readable medium are also disclosed.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 4, 2021
    Assignee: General Electric Company
    Inventors: Kareem Sherif Aggour, Paul Cuddihy, Vijay Shiv Kumar, Jenny Marie Weisenberg Williams, Anthony Joseph Vinciquerra
  • Patent number: 10963518
    Abstract: A system to generate and run federated queries against a plurality of data stores storing disparate data types, the system including a user interface receiving query details from a data consumer, a metadata knowledge graph containing metadata for links and relationships of the data stores, a knowledge-driven querying layer accessing the graph and selecting predefined constrainable queries from a nodegroup store and applying the metadata links/relationships to the predefined constrainable queries to assemble subqueries, a query and analysis platform providing the subqueries to some of the data stores for execution, a scalable analytic execution layer receiving and aggregating search results from the data stores into a merged search result and/or obtaining analytic results by applying machine learning and artificial intelligence techniques to the distributed data, the user interface presenting visualizations generated from the merged search results, and/or the analytic results.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: March 30, 2021
    Assignee: General Electric Company
    Inventors: Kareem Sherif Aggour, Paul Cuddihy, Vijay Shiv Kumar, Jenny Marie Weisenberg Williams, Anthony Joseph Vinciquerra
  • Patent number: 10906101
    Abstract: A powder quality control system includes a powder container, a piston, and at least one sensor. The powder container is configured to contain a powder sample. The piston is configured to compact the powder sample in the powder container. The at least one sensor is configured to measure at least one parameter when the piston compacts the powder sample to facilitate determining a powder quality measurement for the powder sample.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 2, 2021
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Anthony Joseph Vinciquerra
  • Publication number: 20200298499
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 24, 2020
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Patent number: 10766190
    Abstract: Additive manufacturing apparatus including a build module is presented. The build module includes a support structure; a powder supply chamber formed in the support structure; and powder applicator disposed on the support structure and located proximate to the powder supply chamber. The build module further includes a powder recovery chamber and a plurality of build plates spatially disposed around the powder recovery chamber, the plurality of build plates configured to move around the powder recovery chamber. The build module is configured such that during an additive manufacturing process step, a build plate of the plurality of build plates is disposed between the powder supply chamber and the powder recovery chamber, and the powder applicator is configured to distribute a required amount of the powder material from the powder supply chamber on the build plate and deposit any excess powder material in the powder recovery chamber. Related processes are also presented.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 8, 2020
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Anthony Joseph Vinciquerra
  • Publication number: 20200272624
    Abstract: A system to query a federated store containing disparate data types and stores, the system including a UI or API to specify query details, a metadata knowledge graph with metadata describing the contents of the data stores, the relationships among them, and how to programmatically query the data stores, a predefined constrainable query (‘nodegroup’) store containing nodegroups providing a template to search the data stores, the querying layer including services and libraries to process nodegroups and generate a set of queries, a query and analysis platform providing the set of queries to at least one data store for execution at the federated stores and return a result, a scalable analytic execution layer applying machine learning/artificial intelligence techniques to analyze the query results and presenting data analysis result visualizations. A method and a non-transitory medium are also disclosed.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Kareem Sherif AGGOUR, Paul CUDDIHY, Vijay Shiv KUMAR, Jenny Marie Weisenberg WILLIMAS, Anthony Joseph VINCIQUERRA
  • Publication number: 20200272623
    Abstract: A system for querying a federated data store includes a metadata knowledge graph describing the contents and relationships among one or more underlying data stores, an interactive user interface receiving requests from a data consumer, a predefined constrainable query (‘nodegroup’) store containing predefined constrainable queries that define data subsets of interest across one or more of the underlying data repositories, a knowledge-driven querying layer generating and executing queries against the federated data store and merging responsive results, a scalable analytic execution layer receiving the search results from the federated data store and applying machine learning/artificial intelligence techniques to analyze the results, and a user interface presenting visualizations of raw or analyzed results to the consumer. A method and a non-transitory computer-readable medium are also disclosed.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Kareem Sherif AGGOUR, Paul CUDDIHY, Vijay Shiv KUMAR, Jenny Marie Weisenberg WILLIMAS, Anthony Joseph VINCIQUERRA
  • Publication number: 20200272664
    Abstract: A system to generate and run federated queries against a plurality of data stores storing disparate data types, the system including a user interface receiving query details from a data consumer, a metadata knowledge graph containing metadata for links and relationships of the data stores, a knowledge-driven querying layer accessing the graph and selecting predefined constrainable queries from a nodegroup store and applying the metadata links/relationships to the predefined constrainable queries to assemble subqueries, a query and analysis platform providing the subqueries to some of the data stores for execution, a scalable analytic execution layer receiving and aggregating search results from the data stores into a merged search result and/or obtaining analytic results by applying machine learning and artificial intelligence techniques to the distributed data, the user interface presenting visualizations generated from the merged search results, and/or the analytic results.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Kareem Sherif AGGOUR, Paul CUDDIHY, Vijay Shiv KUMAR, Jenny Marie Weisenberg WILLIAMS, Anthony Joseph VINCIQUERRA
  • Publication number: 20200147889
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Voramon Supatarawanich DHEERADHADA, Natarajan CHENNIMALAI KUMAR, Vipul Kumar GUPTA, Laura DIAL, Anthony Joseph VINCIQUERRA, Timothy HANLON
  • Publication number: 20190218650
    Abstract: A method of forming titanium-based spherical metallic particles includes performing a hydride-dehydride process on a meltless metallic sponge to form a feedstock material including a metallic powder. The method further includes introducing the feedstock material into a microwave plasma discharge to form the titanium-based spherical metallic particles.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Pazhayannur Ramanathan Subramanian, Anthony Joseph Vinciquerra, Bernard Patrick Bewlay
  • Publication number: 20190217395
    Abstract: A method of forming titanium-based spherical metallic particles includes contacting a feedstock material including a metal halide with a reductant in the presence of a microwave plasma discharge.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Pazhayannur Ramanathan Subramanian, Anthony Joseph Vinciquerra, Laura Cerully Dial, Steven Jude Duclos
  • Publication number: 20190210108
    Abstract: A powder quality control system includes a powder container, a piston, and at least one sensor. The powder container is configured to contain a powder sample. The piston is configured to compact the powder sample in the powder container. The at least one sensor is configured to measure at least one parameter when the piston compacts the powder sample to facilitate determining a powder quality measurement for the powder sample.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Inventors: Scott Andrew Weaver, Anthony Joseph Vinciquerra
  • Publication number: 20190160741
    Abstract: Additive manufacturing apparatus including a build module is presented. The build module includes a support structure; a powder supply chamber formed in the support structure; and powder applicator disposed on the support structure and located proximate to the powder supply chamber. The build module further includes a powder recovery chamber and a plurality of build plates spatially disposed around the powder recovery chamber, the plurality of build plates configured to move around the powder recovery chamber. The build module is configured such that during an additive manufacturing process step, a build plate of the plurality of build plates is disposed between the powder supply chamber and the powder recovery chamber, and the powder applicator is configured to distribute a required amount of the powder material from the powder supply chamber on the build plate and deposit any excess powder material in the powder recovery chamber. Related processes are also presented.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Scott Andrew Weaver, Anthony Joseph Vinciquerra
  • Publication number: 20190111621
    Abstract: An additive manufacturing apparatus including a build module is presented. The build module includes a support structure and an integrated build unit formed in the support structure. The integrated build unit includes a chamber; a powder supply compartment comprising a powder material, formed in the chamber; and a build compartment comprising a build platform, formed in the chamber adjacent to the powder supply compartment. A separator is disposed between the powder supply compartment and the build compartment. An additive manufacturing apparatus including a plurality of build modules is also presented.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventors: Scott Andrew Weaver, Anthony Joseph Vinciquerra