Patents by Inventor Anthony K. Tyree

Anthony K. Tyree has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8698059
    Abstract: An air vehicle includes a fuselage, and one or more lifting surfaces attached to the fuselage. The lifting surfaces deploy form a stowed, compact condition, to a deployed condition in which the lifting surfaces are deployed to provide lift to the air vehicle. The lifting surfaces each include a top member and a bottom member, which are joined at leading and trailing edges, such as by welds along the seams, or by flexible material placed along the seams. In deploying the thickness of the lifting surfaces increase, with middle portions of the members (portions of the members between the leading and trailing edges) moving away from one another. This may be accompanied by a lessening of the chord of the lifting surface, with the leading edge and the trailing edge moving closer together as the lifting surface deploys.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 15, 2014
    Assignee: Raytheon Company
    Inventors: Jonathan P. Nikkel, Anthony K. Tyree
  • Publication number: 20130291753
    Abstract: An air vehicle includes a fuselage, and one or more lifting surfaces attached to the fuselage. The lifting surfaces deploy form a stowed, compact condition, to a deployed condition in which the lifting surfaces are deployed to provide lift to the air vehicle. The lifting surfaces each include a top member and a bottom member, which are joined at leading and trailing edges, such as by welds along the seams, or by flexible material placed along the seams. In deploying the thickness of the lifting surfaces increase, with middle portions of the members (portions of the members between the leading and trailing edges) moving away from one another. This may be accompanied by a lessening of the chord of the lifting surface, with the leading edge and the trailing edge moving closer together as the lifting surface deploys.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Inventors: Jonathan P. Nikkel, Anthony K. Tyree
  • Patent number: 8502126
    Abstract: One example embodiment relates to a navigation system for a guided projectile. The navigation system includes a detector within the guided projectile. The detector determines an actual amount of time it takes after launch for the guided projectile to accelerate through mach one. The navigation system further includes a guidance system within the object. The guidance system includes a projected flight plan for the guided projectile. The projected flight plan includes an estimated amount of time after launch it will take the object to accelerate through the speed of sound. The guidance system compares the actual amount of time and the estimated amount of time and adjusts the flight path of the guided projectile based on data received from the detector.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 6, 2013
    Assignee: Raytheon Company
    Inventor: Anthony K. Tyree
  • Publication number: 20110290932
    Abstract: One example embodiment relates to a method of navigating an object. The method includes detecting when the object accelerates through the speed of sound and maneuvering the object based on when the object accelerates through the speed of sound. Another example embodiment relates to a system for navigating an object. The system includes a detector within the object. The detector determines when the object accelerates through mach one. The system further includes a guidance system within the object. The guidance system adjusts the flight of the object based on data received from the detector.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: Raytheon Company
    Inventor: Anthony K. Tyree
  • Patent number: 8047070
    Abstract: An apparatus and method for estimating a roll angle of a projectile may include a measurement unit outputting roll rate, yaw rate, and pitch rate signals indicative of rotation rates about substantially orthogonal roll, yaw, and pitch axes, the roll axis substantially aligned with a longitudinal axis of the projectile. A controller may sample the roll rate, yaw rate, and pitch rate signals to obtain time sequential roll rate, yaw rate, and pitch rate samples; calculate time sequential cumulative roll estimates by summing the roll rate samples; calculate time sequential gravity vector estimates from the corresponding yaw rate and pitch rate samples; de-roll each gravity vector estimate based on the corresponding cumulative roll estimate; filter the de-rolled gravity vector estimates to determine a filtered initial roll estimate; and add the filtered initial roll estimate to the current cumulative roll estimate to provide a current roll angle estimate.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 1, 2011
    Assignee: Raytheon Company
    Inventor: Anthony K. Tyree
  • Publication number: 20110061456
    Abstract: An apparatus and method for estimating a roll angle of a projectile may include a measurement unit outputting roll rate, yaw rate, and pitch rate signals indicative of rotation rates about substantially orthogonal roll, yaw, and pitch axes, the roll axis substantially aligned with a longitudinal axis of the projectile. A controller may sample the roll rate, yaw rate, and pitch rate signals to obtain time sequential roll rate, yaw rate, and pitch rate samples; calculate time sequential cumulative roll estimates by summing the roll rate samples; calculate time sequential gravity vector estimates from the corresponding yaw rate and pitch rate samples; de-roll each gravity vector estimate based on the corresponding cumulative roll estimate; filter the de-rolled gravity vector estimates to determine a filtered initial roll estimate; and add the filtered initial roll estimate to the current cumulative roll estimate to provide a current roll angle estimate.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Inventor: Anthony K. Tyree
  • Patent number: 7773027
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 10, 2010
    Assignee: Raytheon Company
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Patent number: 7768448
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 3, 2010
    Assignee: Raytheon Company
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Patent number: 7764222
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 27, 2010
    Assignee: Raytheon Company
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Patent number: 7760131
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 20, 2010
    Assignee: Raytheon Company
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Publication number: 20100067608
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: ANTHONY K. TYREE, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Publication number: 20100067587
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Publication number: 20100066597
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Publication number: 20100066596
    Abstract: An all-digital line-of-sight (LOS) process architecture addresses the size, weight, power and performance constraints of a receiver for use in semi-active or active pulsed electromagnetic (EM) targeting systems. The all-digital architecture provides a platform for enhanced techniques for sensitive pulse detection over a wide field-of-view, adaptive pulse detection, LOS processing and counter measures.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Anthony K. Tyree, Michael C. Snyder, Donald R. Houser, William J. Schmitt, Robert J. Schaller
  • Patent number: 5347469
    Abstract: A method and system for covertly determining and predicting air-to-air target data relative to a predetermined position passively senses the target (84) to produce a passive target data set. Next, the method and system transform (14) the passive target data set to produce a transformed passive data set. Then, the system compares (22) the transformed passive data set to a predicted data set (20) to generate a measurement error. By actively sensing (38 and 40) the target for a minimally detectable period (42) of time to produce an active target data set (28), the system applies constraints (28) and therefrom computes penalties (26) that relate to the measurement error (22) to produce a system error. Then, in response to the system error (24) the method and system compute the direction (30) and magnitude (32) for a perturbation or a response (44) to the predicted target data (18).
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: September 13, 1994
    Inventors: William C. Choate, Charles E. Frey, Anthony K. Tyree