Patents by Inventor Anthony M. Renstrom

Anthony M. Renstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230341615
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 26, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230228919
    Abstract: Optical films and stacks include at least one optically diffusive layer. The optically diffusive layer can include a plurality of nanoparticles and a polymeric material bonding the nanoparticles to each other to form a plurality of nanoparticle aggregates defining a plurality of voids therebetween. For substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm: in the visible wavelength range, the optical film or optically diffusive layer has an average specular transmittance Vs; and in the infrared wavelength range, the optical film or optically diffusive layer has an average total transmittance It and an average specular transmittance Is, Is/It?0.6, Is/Vs?2.5.
    Type: Application
    Filed: April 20, 2021
    Publication date: July 20, 2023
    Inventors: Matthew E. Sousa, Matthew S. Cole, Jeremy O. Swanson, Bharat R. Acharya, Jason S. Petaja, Anthony M. Renstrom, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford
  • Publication number: 20230214062
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 mn?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: May 4, 2021
    Publication date: July 6, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11448808
    Abstract: Example systems may include one or both of a light emitter and a light receiver, and an optical filter. The optical filter may include a wavelength selective scattering layer configured to scatter visible light. The optical filter may include a wavelength selective reflecting layer having a predetermined transmission band configured to compensate for a color deviation. The optical filter may include a broadband reflecting layer having a predetermined reflection band configured to compensate for a color deviation. The optical filter may include a low-index layer configured to reduce a color deviation in light emitted by the light emitter or received by the light receiver. The wavelength selective scattering layer may include nanoparticles dispersed in a binder, wherein the ratio of the nanoparticles to the binder by weight is at least 50%. Example articles may include example optical filters.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: September 20, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Guanglei Du, John A. Wheatley, Matthew E. Sousa, Anthony M. Renstrom, Neeraj Sharma
  • Publication number: 20220146725
    Abstract: A system may include one or both of a light emitter and a light receiver, and an optical filter. The optical filter includes a wavelength selective scattering layer. The wavelength selective scattering layer may have a near-infrared scattering ratio of less than about 0.9. The filter may have a visible reflective haze ratio of greater than about 0.5. A method may include disposing the wavelength selective scattering layer adjacent one or both of the light emitter and the light receiver. The optical filter may include a wavelength selective reflective layer. The optical filter may include a wavelength selective absorbing layer. An article may include the optical filter. The wavelength selective scattering layer may have an average near-infrared scattering of less than 60%, an average visible scattering of greater than 10%, and a difference between the % total visible reflectance and the % diffuse visible reflectance of less than 20.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Guanglei DU, John A. WHEATLEY, Yi Hang LV, Anthony M. RENSTROM, Neeraj SHARMA, Fuguo XU
  • Patent number: 11269121
    Abstract: A system may include one or both of a light emitter (46) and a light receiver (40), and an optical filter (10). The optical filter (10) includes a wavelength selective scattering layer (14). The wavelength selective scattering layer (14) may have a near-infrared scattering ratio of less than about 0.9. The filter (10) may have a visible reflective haze ratio of greater than about 0.5. A method may include disposing the wavelength selective scattering layer (14) adjacent one or both of the light emitter (46) and the light receiver (40). The optical filter (10) may include a wavelength selective reflective layer (16). The optical filter (10) may include a wavelength selective absorbing layer (34). An article may include the optical filter (10).
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: March 8, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Guanglei Du, John A. Wheatley, Yi Hang Lv, Anthony M. Renstrom, Neeraj Sharma, Fuguo Xu
  • Publication number: 20210263203
    Abstract: An article includes an optical filter that comprises a wavelength selective reflective layer and at least one wavelength selective absorbing layer. The optical filter has visible transmittance between 400 nm-700 nm of less than about 30% and near infrared transmittance at 830 nm-900 nm greater than about 30%.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: John A. Wheatley, Guanglei Du, David T. Yust, Neeraj Sharma, Gilles J. Benoit, Ellison G. Kawakami, Anthony M. Renstrom
  • Patent number: 11054556
    Abstract: An article includes an optical filter that comprises a wavelength selective reflective layer and at least one wavelength selective absorbing layer. The optical filter has visible transmittance between 400 nm-700 nm of less than about 30% and near infrared transmittance at 830 nm-900 nm greater than about 30%.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: July 6, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: John A. Wheatley, Guanglei Du, David T. Yust, Neeraj Sharma, Gilles J. Benoit, Ellison G. Kawakami, Anthony M. Renstrom
  • Patent number: 11034830
    Abstract: A film is described comprising a first film layer having a Tg ranging from 30° C. to 60° C. The first film layer comprises a (meth)acrylic polymer and polyvinyl acetal polymer composition. The film further comprises a second layer proximate the first film layer. The second layer is different than the first film layer. The second may be a cured (meth)acrylic polymer film or coating; a backing such as thermoplastic polymer, woven or nonwoven fabrics, metal foils, paper, foams; or a coverfilm such as a fluoropolymer.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 15, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Jonathan E. Janoski, Carla S. Thomas, Anthony F. Schultz, Tien Y. H. Whiting, Kevin M. Lewandowski, Duane D. Fansler, Keith R. Lyon, Arlin L. Weikel, Timothy J. Hebrink, Amanda K. Hulke, Eric D. Shockey, Anthony M. Renstrom, Sonja S. Mackey, Thomas P. Klun
  • Publication number: 20190391307
    Abstract: An article includes an optical filter that comprises a wavelength selective reflective layer and at least one wavelength selective absorbing layer. The optical filter has visible transmittance between 400 nm-700 nm of less than about 30% and near infrared transmittance at 830 nm-900 nm greater than about 30%.
    Type: Application
    Filed: January 20, 2017
    Publication date: December 26, 2019
    Inventors: John A. WHEATLEY, Guanglei DU, David T. YUST, Neeraj SHARMA, Gilles J. BENOIT, Ellison G. KAWAKAMI, Anthony M. RENSTROM
  • Publication number: 20190339432
    Abstract: Example systems may include one or both of a light emitter and a light receiver, and an optical filter. The optical filter may include a wavelength selective scattering layer configured to scatter visible light. The optical filter may include a wavelength selective reflecting layer having a predetermined transmission band configured to compensate for a color deviation. The optical filter may include a broadband reflecting layer having a predetermined reflection band configured to compensate for a color deviation. The optical filter may include a low-index layer configured to reduce a color deviation in light emitted by the light emitter or received by the light receiver. The wavelength selective scattering layer may include nanoparticles dispersed in a binder, wherein the ratio of the nanoparticles to the binder by weight is at least 50%. Example articles may include example optical filters.
    Type: Application
    Filed: January 3, 2018
    Publication date: November 7, 2019
    Inventors: Guanglei DU, John A. WHEATLEY, Matthew E. SOUSA, Anthony M. RENSTROM, Neeraj SHARMA
  • Publication number: 20190025481
    Abstract: A system may include one or both of a light emitter (46) and a light receiver (40), and an optical filter (10). The optical filter (10) includes a wavelength selective scattering layer (14). The wavelength selective scattering layer (14) may have a near-infrared scattering ratio of less than about 0.9. The filter (10) may have a visible reflective haze ratio of greater than about 0.5. A method may include disposing the wavelength selective scattering layer (14) adjacent one or both of the light emitter (46) and the light receiver (40). The optical filter (10) may include a wavelength selective reflective layer (16). The optical filter (10) may include a wavelength selective absorbing layer (34). An article may include the optical filter (10).
    Type: Application
    Filed: May 6, 2016
    Publication date: January 24, 2019
    Inventors: Guanglei DU, John A. WHEATLEY, Yi Hang LV, Anthony M. RENSTROM
  • Publication number: 20180346705
    Abstract: A film is described comprising a first film layer having a Tg ranging from 30° C. to 60° C. The first film layer comprises a (meth)acrylic polymer and polyvinyl acetal polymer composition. The film further comprises a second layer proximate the first film layer. The second layer is different than the first film layer. The second may be a cured (meth)acrylic polymer film or coating; a backing such as thermoplastic polymer, woven or nonwoven fabrics, metal foils, paper, foams; or a coverfilm such as a fluoropolymer.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 6, 2018
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jonathan E. Janoski, Carla S. Thomas, Anthony F. Schultz, Tien Y.H. Whiting, Kevin M. Lewandowski, Duane D. Fansler, Keith R. Lyon, Arlin L. Weikel, Timothy J. Hebrink, Amanda K. Hulke, Eric D. Shockey, Anthony M. Renstrom, Sonja S. Mackey, Thomas P. Klun
  • Patent number: 9885807
    Abstract: Optical films are described having a polymerized microstructured surface that comprises the reaction product of a polymerizable resin composition comprising at least one polymerizable ethylenically unsaturated triphenyl monomer. Also described are certain triphenyl (meth)acrylate monomers and polymerizable resin compositions.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: February 6, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bryan V. Hunt, Kyle J. Lindstrom, Judith M. Invie, David B. Olson, Anthony M. Renstrom
  • Publication number: 20170166750
    Abstract: Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. In one embodiment, the hardcoat composition further comprises and at least 50 wt-% solids of silica nanoparticles. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Richard J. Pokorny, Steven D. Solomonson, Robert F. Kamrath, Anthony M. Renstrom, Roger W. Barton, Craig R. Sykora
  • Publication number: 20160326383
    Abstract: Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. The hardcoat composition further comprises inorganic oxide nanoparticles such as silica that comprises a copolymer izable surface treatment and a non-copolymerizable silane surface treatment. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
    Type: Application
    Filed: January 13, 2015
    Publication date: November 10, 2016
    Inventors: Richard J. Pokorny, Robert F. Kamrath, Michelle L. Toy, Steven D. Solomonson, Elisa M. Cross, Anthony M. Renstrom, Roger W. Barton, Craig R. Sykora
  • Publication number: 20160245962
    Abstract: Presently described are optical films, such as a brightness enhancing film, having a polymerized microstructured surface disposed on a preformed polymeric film wherein the film has a thickness of no greater than 3 mils and the polymerized microstructured surface consists of the reaction product of a substantially non-brominated polymerizable resin composition.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Bryan V. Hunt, Judith M. Invie, Anthony M. Renstrom, David B. Olson
  • Patent number: 9383482
    Abstract: The present invention concerns antireflective films comprising a high refractive index layer (60) and low refractive index layer (80) disposed on the high refractive index layer. The antireflective films have a microstructured surface (70) that can be derived from a microreplicated tool.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: July 5, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Christopher B. Walker, Jr., Christopher P. Tebow, Tri D. Pham, Steven H. Kong, Joseph T. Aronson, Kyle J. Lindstrom, Michael K. Gerlach, Michelle L. Toy, Taun L. McKenzie, Anthony M. Renstrom, Robert A. Yapel, Mitchell A. F. Johnson