Patents by Inventor Anthony Neal Watkins

Anthony Neal Watkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8147920
    Abstract: A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: April 3, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Patry, Anthony Neal Watkins, Jeffrey D. Jordan
  • Publication number: 20090233001
    Abstract: A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Application
    Filed: February 13, 2009
    Publication date: September 17, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Patry, Anthony Neal Watkins, Jeffrey D. Jordan
  • Patent number: 7491428
    Abstract: A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 17, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Ingram, Anthony Neal Watkins, Jeffrey D. Jordan
  • Patent number: 7390768
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: June 24, 2008
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
  • Patent number: 7318915
    Abstract: This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 15, 2008
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Patent number: 7194912
    Abstract: A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between resistance of a carbon nanotube and carbon nanotube strain, changes experienced by the portion of the structure to which the sensor is coupled induce a change in electrical properties of the conductors.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: March 27, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Donald M. Oglesby, JoAnne L. Ingram
  • Patent number: 7129467
    Abstract: A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 31, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Russell A. Wincheski, Jan M. Smits, Jeffrey D. Jordan, Anthony Neal Watkins, JoAnne L. Ingram
  • Publication number: 20040228961
    Abstract: A method is provided for the controlled deposition and alignment of carbon nanotubes. A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.
    Type: Application
    Filed: December 4, 2003
    Publication date: November 18, 2004
    Applicant: United States of America as represented by the Admin. of the Nat'l Aeronautics & Space Admin.
    Inventors: Jan M. Smits, Russell A. Wincheski, JoAnne L. Ingram, Anthony Neal Watkins, Jeffrey D. Jordan
  • Publication number: 20030144143
    Abstract: This invention relates generally to a stabilization mechanism for use in oxidation/reduction catalyst systems. It particularly relates to a ruthenium stabilization mechanism that enables the use of inexpensive metallic species within catalyst systems targeted for the elimination of toxic emissions such as carbon monoxide, hydrocarbons, and other volatile organics, and specifically nitrogen oxide species. Said stabilization mechanism includes the use of zirconium-oxides in an oxidation-reduction catalyst.
    Type: Application
    Filed: January 13, 2003
    Publication date: July 31, 2003
    Applicant: Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Publication number: 20030139290
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Application
    Filed: January 22, 2002
    Publication date: July 24, 2003
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby