Patents by Inventor Anthony R. H. Goodwin

Anthony R. H. Goodwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080078581
    Abstract: A formation fluid sampling tool is provided with a drill which drills into the formation in a manner perpendicular or oblique to the borehole wall. Preferably the tool introduces a mechanism into the drilled hole for enhancing the mobility of the reservoir fluid. In one embodiment the mechanism is a heating element on the drill. In another embodiment, the mechanism is hot fluid which is generated in the tool and injected into the drilled hole. In another embodiment, the mechanism is a solvent which is stored in the tool and injected by the tool into the drilled hole.
    Type: Application
    Filed: June 14, 2007
    Publication date: April 3, 2008
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Anthony R.H. Goodwin, Peter S. Hegeman, Julian J. Pop, Ashley C. Kishino, Gary J. Tustin, Raymond V. Nold, Kai Hsu, Christopher S. Del Campo, Ricardo Vasques
  • Publication number: 20080066534
    Abstract: Samples of hydrocarbon are obtained with a coring tool. An analysis of some thermal or electrical properties of the core samples may be performed downhole. The core samples may also be preserved in containers sealed and/or refrigerated prior to being brought uphole for analysis. The hydrocarbon trapped in the pore space of the core samples may be extracted from the core samples downhole. The extracted hydrocarbon may be preserved in chambers and/or analyzed downhole.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 20, 2008
    Inventors: LENNOX REID, ANTHONY R. H. GOODWIN, PETER S. HEGEMAN, Charles Woodburn
  • Publication number: 20080066536
    Abstract: A method of retrieving a formation fluid from a formation adjacent a borehole wall includes estimating at least one of a permeability of the formation and a viscosity of the formation fluid. A first tool is selected based on the estimation, the first tool being selected from one of a heating and sampling tool, an injection and sampling tool, and a coring tool. An attempt to retrieve a formation fluid sample from the formation is then made with the first tool, and a formation fluid sample is retrieved from the formation. A second retrieval process may then be initiated, in which the second retrieval process includes increasing the mobility of the formation fluid.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 20, 2008
    Inventors: Anthony R. H. Goodwin, Peter S. Hegeman
  • Publication number: 20080066537
    Abstract: Methods for performing downhole fluid compatibility tests include obtaining an downhole fluid sample, mixing it with a test fluid, and detecting a reaction between the fluids. Tools for performing downhole fluid compatibility tests include a plurality of fluid chambers, a reversible pump and one or more sensors capable of detecting a reaction between the fluids.
    Type: Application
    Filed: May 9, 2007
    Publication date: March 20, 2008
    Applicant: Schlumberger Technology Corporation
    Inventors: Peter S. Hegeman, Anthony R. H. Goodwin, Moin Muhammad, Ricardo Vasques, Cosan Ayan, Michael O'Keefe, Tsutomu Yamate
  • Patent number: 7222671
    Abstract: A viscometer for a down hole tool positionable in a well bore penetrating a subterranean formation is described. The formation contains at least one fluid therein. The down hole tool is adapted to convey at least a portion of the fluid to the viscometer. The viscometer comprises a sensor unit, and at least one magnet. The sensor unit is positionable within the down hole tool and comprises at least two spatially disposed clamps and a wire suspended in tension between the at least two clamps such that the wire is available for interaction with the fluid when the viscometer is positioned within the down hole tool and the down hole tool is positioned within the subterranean formation and receives the fluid from the subterranean formation.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: May 29, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Derek Caudwell, Anthony R. H. Goodwin, Martin Trusler, Michael W. Frels, Kai Hsu, Jonathan W. Brown, Julian J. Pop, Bunker M. Hill, Andrew L. Kurkjian
  • Patent number: 7194902
    Abstract: A viscometer-densimeter for a down hole tool positionable in a well bore penetrating a subterranean formation is described. The formation contains at least one fluid therein. The down hole tool is adapted to convey at least a portion of the fluid to the viscometer-densimeter. The viscometer-densimeter comprises a sensor unit, and at least one magnet. The sensor unit is positionable within the down hole tool and comprises at least two spatially disposed connectors and a wire suspended in tension between the at least two connectors such that the wire is available for interaction with the fluid when the viscometer-densimeter is positioned within the down hole tool and the down hole tool is positioned within the subterranean formation and receives the fluid from the subterranean formation. The connectors and the wire are constructed so as to provide a frequency oscillator.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: March 27, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Anthony R. H. Goodwin, Kai Hsu, Michael W. Frels
  • Patent number: 7075062
    Abstract: An oil sample is subjected to nuclear electromagnetic irradiation downhole, and the electron and/or mass density of the oil sample is determined by measuring the attenuation of the irradiation and relating the attenuation to the electron density. If the irradiation is high energy gamma ray irradiation, the attenuation is considered to be a function of Compton scattering only, which in turn is related to the electron density of the sample. If X-rays are utilized, attenuation is preferably measured in two energy windows. Using the two different attenuation values found in the different windows, the attenuation due to Compton scattering can be found and related to the electron and/or mass density of the sample. In addition, attenuation due to photoelectric absorption may also be determined and related to the presence of one or more heavy elements in the oil (e.g., sulfur) and/or sanding.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: July 11, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Felix Chen, Gary Corris, Oliver Mullins, Xu Wu, John Fitzgerald, Anthony R. H. Goodwin
  • Publication number: 20030209066
    Abstract: Apparatus for determining the density of a fluid downhole includes apparatus for measuring compressibility of the fluid and apparatus for determining the speed of sound through the fluid. According to the methods of the invention, density of the fluid is calculated based upon the relationship between density, compressibility, and the speed of sound through the fluid.
    Type: Application
    Filed: May 8, 2002
    Publication date: November 13, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Anthony R.H. Goodwin
  • Patent number: 6640625
    Abstract: Apparatus for determining the density of a fluid downhole includes apparatus for measuring compressibility of the fluid and apparatus for determining the speed of sound through the fluid. According to the methods of the invention, density of the fluid is calculated based upon the relationship between density, compressibility, and the speed of sound through the fluid.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: November 4, 2003
    Inventor: Anthony R. H. Goodwin
  • Publication number: 20030106993
    Abstract: An oil sample is subjected to nuclear electromagnetic irradiation downhole, and the electron and/or mass density of the oil sample is determined by measuring the attenuation of the irradiation and relating the attenuation to the electron density. If the irradiation is high energy gamma ray irradiation, the attenuation is considered to be a function of Compton scattering only, which in turn is related to the electron density of the sample. If X-rays are utilized, attenuation is preferably measured in two energy windows. Using the two different attenuation values found in the different windows, the attenuation due to Compton scattering can be found and related to the electron and/or mass density of the sample.
    Type: Application
    Filed: December 10, 2001
    Publication date: June 12, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Felix Chen, Gary Corris, Oliver Mullins, Xu Wu, John Fitzgerald, Anthony R.H. Goodwin
  • Patent number: 6065328
    Abstract: The instant invention relates to a method and apparatus to determine the thermodynamic properties of a gas medium without making a determination of gas composition. In the instant invention, the speed of sound of a gas medium in a vessel is determined at various temperatures and pressures based upon an isobaric process with estimated initial values of density, compressibility and numerical deriviative (dZ/dT) for the same gas medium. According to the preferred embodiment, this information may be measured at constant pressure or constant temperature. Once the physical information is determined, a routine is executed by which initial estimated parameters such as the compressibility and heat capacity of the gas medium will converge to accurate values. From these parameters, the thermophysical properties of the gas medium may be determined.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: May 23, 2000
    Assignee: Gas Research Institute
    Inventors: Troy Dayton, Steve Beyerlein, Jeffrey L. Savidge, Anthony R. H. Goodwin
  • Patent number: 5932793
    Abstract: The instant invention relates to a method and apparatus to determine the thermodynamic properties of a gas medium without making a determination of gas composition. In the instant invention, the pressure and speed of sound of a gas medium in a vessel are determined at multiple temperature points. According to the preferred embodiment, this information may be on a single isochore. Once the physical information is determined, an interpolation routine is executed by which initial estimated parameters such as the density and the compressibility of the gas medium will converge to accurate values. From these parameters, the thermophysical properties of the gas medium may be determined.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: August 3, 1999
    Assignee: Gas Research Institute
    Inventors: Troy Dayton, Steve Beyerlein, Jeffrey L. Savidge, Anthony R. H. Goodwin
  • Patent number: 5745438
    Abstract: Electrostatic transducers (10, 100) for generating and/or sensing percussion waves have an internal rigid unitary element comprising an insulating sleeve (17, 117), an electrode backplate (21, 121) situated within the sleeve (17, 117), and a dielectric layer (22, 122) which secures the electrode backplate (21, 121) within the sleeve (17, 117). The dielectric layer (22, 122) is a generally continuous layer and has support fingers (24, 124) protruding outwardly away from the electrode backplate (21, 121) for supporting an electrode diaphragm (26, 126), preferably a durable metal foil. The electrode diaphragm (26, 126) may be hermetically sealed to a housing (111), which encloses the unitary element so that the transducers (10, 100) are better suited for harsh, extreme high/low temperature, and/or extreme high/low pressure environments. Furthermore, the interior region (32, 132) of the transducer (10, 100) can be evacuated via a throughway (31, 131) so that the transducer power can be increased.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: April 28, 1998
    Assignee: Gas Research Institute
    Inventors: James A. Hill, Anthony R. H. Goodwin
  • Patent number: 5600610
    Abstract: Electrostatic transducers (10, 100) for generating and/or sensing percussion waves have an internal rigid unitary element comprising an insulating sleeve (17, 117), an electrode backplate (21, 121) situated within the sleeve (17, 117), and a dielectric layer (22, 122) which secures the electrode backplate (21, 121) within the sleeve (17, 117). The dielectric layer (22, 122) is a generally continuous layer and has support fingers (24, 124) protruding outwardly away from the electrode backplate (21, 121) for supporting an electrode diaphragm (26, 126), preferably a durable metal foil. The electrode diaphragm (26, 126) may be hermetically sealed to a housing (111), which encloses the unitary element so that the transducers (10, 100) are better suited for harsh, extreme high/low temperature, and/or extreme high/low pressure environments. Furthermore, the interior region (32, 132) of the transducer (10, 100) can be evacuated via a throughway (31, 131) so that the transducer power can be increased.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: February 4, 1997
    Assignee: Gas Research Institute
    Inventors: James A. Hill, Anthony R. H. Goodwin