Patents by Inventor Anthony Soong

Anthony Soong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060233271
    Abstract: A distributed transmit diversity system based on OFDM signaling transmits a broadcast/multicast service signal from one or more first base stations and from one or more second base stations, wherein the first and second base stations transmit orthogonalized pilots. Correspondingly, a remote receiver, e.g., a mobile station, resolves the orthogonal pilots and makes independent channel estimates relative to the first and second base stations for improved diversity reception. Pilots are orthogonalized between the first and second base stations by using orthogonal space-time or space-frequency block coding. For example, in one embodiment, a first pilot tone pair is interleaved with data tones in the OFDM data blocks being transmitted from the first base stations, while an orthogonal second pilot tone pair is interleaved with data tones in the same OFDM data blocks being synchronously transmitted from the second base stations.
    Type: Application
    Filed: December 29, 2005
    Publication date: October 19, 2006
    Inventors: Alpaslan Savas, Wanshi Chen, Anthony Soong, Shiau-He Tsai
  • Publication number: 20060133268
    Abstract: A wireless communication network improves reverse link communication performance by changing one or more Automatic Repeat Request (ARQ) control settings as a function of measured or estimated reverse link loading. Control settings can be changed on a per-sector basis, allowing consideration of different loading conditions in different radio sectors of the network. Further, control settings can be changed for individual mobile stations, or selected groups of mobile stations, allowing different ARQ controls to be used for different mobile stations. By way of non-limiting example, a control circuit in a base station controller can be configured to take advantage of light reverse link loading conditions in a given radio sector by changing the ARQ control parameter(s) used for one or more mobile stations operating in that sector so that fewer ARQ retransmissions are required for those mobile stations to transmit reverse link data to the network.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 22, 2006
    Inventors: Tao Wu, Wanshi Chen, Young Yoon, Jonas Wiorek, Anthony Soong
  • Publication number: 20060079227
    Abstract: Methods and systems for IMEI registration are provided. In accordance with exemplary embodiments of the present invention, when an IMEI registration fails due to a network failure, the mobile station implements a back-off algorithm for future IMEI registration attempts. Specifically, the present invention provides a back-off algorithm which determines a different amount of time for the time period between each unsuccessful IMEI registration.
    Type: Application
    Filed: April 4, 2005
    Publication date: April 13, 2006
    Applicant: NEXTEL COMMUNICATIONS, INC.
    Inventors: Steven Barrow, Manish Sharma, Anthony Soong
  • Publication number: 20060040674
    Abstract: Users in a wireless communication system are provisioned into QoS-based classes and rate controlled using a single, per-sector common rate control (CRC) sub-channel. In one or more embodiments, different mobile stations are configured to respond differently to the same CRC commands by provisioning them with different Traffic-to-Pilot Ratio (TPR) tables and/or with different TPR step size adjustment tables. That is, the network can define different classes or groups of mobile stations by sending class or group-specific TPR-related values to the mobile stations belonging to a specific class or group. With this method, the mobile stations in one group can achieve different reverse link data rates, or make more aggressive data rate changes, than those in another group, even though both groups receive the same rate control commands.
    Type: Application
    Filed: December 31, 2004
    Publication date: February 23, 2006
    Inventors: Rath Vannithamby, Tao Wu, Patrick Hosein, Young Yoon, Shiau-He Tsai, Anthony Soong, Wanshi Chen
  • Publication number: 20050245278
    Abstract: A method of allocating forward link transmit power with respect to a mobile station that actively is associated with a serving sector and one or more non-serving sectors of a wireless communication network comprises receiving channel quality information at the non-serving sectors as reported by the mobile station for the serving sector, and allocating forward link transmit power for the mobile station at the non-serving sectors as a function of the reported channel quality information. Non-serving sectors may assume that the reported channel quality information establishes the lower power allocation bound for the mobile station on the assumption that each of them has less favorable radio conditions than the serving sector with respect to the mobile station. Thus, base station transceivers operating as non-serving transmitters with respect to a given mobile terminal may nonetheless determine forward link transmit power allocations for the mobile station using serving sector channel quality information.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Inventors: Rath Vannithamby, Shiau-He Tsai, Young Yoon, Anthony Soong
  • Publication number: 20050181834
    Abstract: A base station generates per-cell ACK/NACK responses rather than per-sector ACK/NACK responses. For a given mobile station signal received in softer handoff at two of the base station's sectors, the base station generates an ACK response if at least one of the soft handoff sectors correctly receives the signal, and otherwise generates a NACK response. Alternatively, the base station can combine the softer handoff signals and generate ACK/NACK responses based on whether the combined signal is correctly received. Since only one set of ACK/NACK responses are generated for all of the softer handoff sectors, the base station can use the forward link in just one softer handoff sector to send the ACK/NACK responses to the mobile station, consuming fewer forward link transmit resources at the base station. Or, the base station can send the same ACK/NACK responses from two or more softer handoff sectors, thus allowing diversity combining of the ACK/NACK responses at the mobile station.
    Type: Application
    Filed: December 20, 2004
    Publication date: August 18, 2005
    Inventors: Wanshi Chen, Rath Vannithamby, Shiau-He Shawn Tsai, Young Yoon, Anthony Soong, Tao Wu
  • Publication number: 20050037796
    Abstract: A method and apparatus to provide a deterministic power control mechanism for the transmission of mobile station power control commands based on transmitting non-power control commands for which mobile stations exhibit deterministic, observable responses at related transmit powers, e.g., at the same power. For example, a wireless network base station may adjust the target used for sending power control commands to a given mobile station by observing whether that mobile station correctly responds to rate control or retransmit control commands sent at the same transmit power. The mobile station's response (or non-response) to such non-power control commands is readily observable and can be taken as an indication of whether the power target is sufficient for current radio conditions. Although not so limited, this approach may be particularly beneficial where non-power control commands are sent along with the power commands on a sub-channel of a common power control channel.
    Type: Application
    Filed: January 30, 2004
    Publication date: February 17, 2005
    Inventors: Shiau-He Tsai, Anthony Soong, Young Yoon
  • Publication number: 20050036458
    Abstract: A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
    Type: Application
    Filed: March 15, 2004
    Publication date: February 17, 2005
    Inventors: Young Yoon, Srinivasan Balasubramanian, David Comstock, Long Duan, Ralph Gholmieh, Thawatt Gopal, Patrick Hosein, Anthony Soong, Shiau-He Tsai, Rath Vannithamby, Jonas Wiorek
  • Publication number: 20050032522
    Abstract: A wireless communication network receives packet data transmissions from a mobile station, tracks the occurrence of retransmission requests sent to the mobile station responsive thereto, and modifies the radio link assignments for the mobile station based at least in part on said tracking. For example, a base station controller may be configured to manage the active set of a mobile station based on the number and/or frequency of NACK messages sent by the radio base stations in the mobile station's active set(s) responsive to packet data transmissions from the mobile station. The ACK/NACK response of a radio base station to mobile station transmissions may be used to detect link imbalance, identify poor reverse link channels, etc. The base station controller can add or change radio links based on the ACK/NACK response to improve reverse link performance, trigger voice call handoff, correct link imbalance, etc.
    Type: Application
    Filed: July 12, 2004
    Publication date: February 10, 2005
    Inventors: Anthony Soong, Tao Wu, Thawatt Gopal, Young Yoon, Shiau-He Tsai
  • Publication number: 20050031058
    Abstract: A method and apparatus for automatic gain control of a receiver provides compensation of gain control operations for received signal disruptions. In one embodiment, an automatic gain control circuit remembers control state information from a time just before a given disruption, and uses it to reset the automatic gain control circuit at the end of the disruption, or to maintain the automatic gain control circuit during the disruption. The remembering function may be triggered, such by detecting an impending disruption, or done periodically at a high enough update rate that the remembered information is always current with respect to any given disruption. Thus, an exemplary automatic gain control circuit may generate a receiver gain control signal by filtering received signal power measurements, and compensate the generation of that gain control signal by capturing filter state information just prior to signal disruptions. Compensation may comprise resetting or freezing the filter.
    Type: Application
    Filed: July 9, 2004
    Publication date: February 10, 2005
    Inventors: Anthony Soong, David Purdy, Larry Flowers
  • Publication number: 20050013283
    Abstract: Noise is measured at one or more base stations in a mobile communication system during periodic silence periods. A periodic silence period is defined for at least one carrier that is independent of reverse link channel frame boundaries. The radio base stations transmits silence parameters defining the periodic silence period to mobile stations, which stop transmitting during the periodic silence periods. A time reference is provided to the mobile stations to synchronize the silence periods for all mobile stations.
    Type: Application
    Filed: February 27, 2004
    Publication date: January 20, 2005
    Inventors: Young Yoon, Wanshi Chen, Hsien Woo, Anthony Soong, Srinivasan Balasubramanian, Thawatt Gopal, Long Duan, Shiau-He Tsai
  • Publication number: 20050009551
    Abstract: A communication transceiver transmits a power-controlled first signal responsive to received power control commands and transmits one or more additional signals at variable power gains relative to the transmit power of the first signal based on reception quality feedback received for the additional signals. Thus, a mobile station may transmit a traffic channel at a variable power gain relative to its pilot signal power and vary that gain responsive to reception quality feedback received by it for the traffic signal. Of course, the mobile station may float more than one traffic channel using variable gains and may use different variable gains for each one. Further, the mobile station may float one or more non-pilot channels relative to the pilot or relative to another channel, while transmitting one or more fixed gain channels. Similar variable power gain may be employed at network base stations for forward link signals.
    Type: Application
    Filed: February 27, 2004
    Publication date: January 13, 2005
    Inventors: Shiau-He Tsai, Young Yoon, Tao Wu, Anthony Soong