Patents by Inventor Anthony T. Fiory

Anthony T. Fiory has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7737515
    Abstract: Systems and methods for assembling a structure onto a substrate include an array of programmable magnets disposed beneath a substrate, wherein a magnetic field is applied to the structure to levitate the structure above the substrate while the structure is moved relative to the substrate to align the structure with a corresponding recess formed in the substrate. A magnetic field may be applied to translate and rotate the structure relative to the substrate. Differences between or among the programmable magnets regarding magnetic polarity, energized versus de-energized status, and magnetic field strength may be used to move the structure relative to the substrate in conjunction with a closed-loop control system. A bonded substrate assembly and a method of bonding a first wafer to a second wafer include wherein the first wafer includes a projection and the second wafer includes a matching depression.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: June 15, 2010
    Assignee: New Jersey Institute of Technology
    Inventors: Nuggehalli M. Ravindra, Vijay Kasisomayajula, Sudhakar Shet, Anthony T. Fiory
  • Publication number: 20080315336
    Abstract: Systems and methods for assembling a structure onto a substrate include an array of programmable magnets disposed beneath a substrate, wherein a magnetic field is applied to the structure to levitate the structure above the substrate while the structure is moved relative to the substrate to align the structure with a corresponding recess formed in the substrate. A magnetic field may be applied to translate and rotate the structure relative to the substrate. Differences between or among the programmable magnets regarding magnetic polarity, energized versus de-energized status, and magnetic field strength may be used to move the structure relative to the substrate in conjunction with a closed-loop control system. A bonded substrate assembly and a method of bonding a first wafer to a second wafer include wherein the first wafer includes a projection and the second wafer includes a matching depression.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 25, 2008
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Nuggehalli M. Ravindra, Vijay Kasisomayajula, Sudhakar Shet, Anthony T. Fiory
  • Patent number: 7217592
    Abstract: A method for assembling and integrating microstructures (pills) onto a substrate. A plurality of patterned recesses are formed on the substrates, the recesses having transverse cross-sections and openings of specific shapes. A hard magnetic layer is deposited at the bottom of each said recess. A guide is positioned over the substrate, the guide having patterned hole shapes matching the shapes of the openings to the patterned recesses with which the holes mate. A collection of the pills is placed atop the guide. The said collection includes members with cross-sections matching the shapes of the openings to the recesses, and each pill is coated at one end with a soft magnetic layer. A moving magnetic field is applied to the collection of pills to agitate the pills, and effect a magnetic attraction between the layers at the ends of the pills and the soft magnetic layer at the bottom of the recesses.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 15, 2007
    Assignee: New Jersey Institute of Technology
    Inventors: Ravindra M. Nuggehalli, Anthony T. Fiory, Shet Sudhakar
  • Patent number: 5624590
    Abstract: In an apparatus and process for heating, e.g., a semiconductor wafer within a processing chamber, the wafer is exposed to a flux of electromagnetic radiation from lamps energized by alternating electric current. The surface temperature of the wafer is measured, and responsively, the radiation flux is controlled. The temperature measurement procedure includes collecting radiation propagating away from the wafer in a first probe, collecting radiation propagating away from the wafer and radiation from the lamps in a second probe, and detecting radiation collected in the respective probes. This procedure further involves deconvolving the multiphase ac component of the signal received from each probe, determining the linear functional relationship of the first probe signal as a function of the second probe signal resulting from time-variations of the energizing current, and using this linear functional relationship along with the signal data according to a mathematical expression to infer the temperature.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: April 29, 1997
    Assignee: Lucent Technologies, Inc.
    Inventor: Anthony T. Fiory
  • Patent number: 5442727
    Abstract: In a process for heating, e.g., a semiconductor wafer within a processing chamber, the wafer is exposed to a flux of electromagnetic radiation from lamps energized by alternating electric current. The surface temperature of the wafer is measured, and responsively, the radiation flux is controlled. The temperature measurement procedure includes collecting radiation propagating away from the wafer in a first light-pipe probe, collecting radiation propagating toward the wafer in a second light-pipe probe, and detecting radiation collected in the respective probes. This procedure further involves determining, in the signal received from each probe, a magnitude of a time-varying component resulting from time-variations of the energizing current, and combining at least these magnitudes according to a mathematical expression from which the temperature can be inferred. At least some of the radiation collected by the second probe is collected after reflection from a diffusely reflecting surface.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: August 15, 1995
    Assignee: AT&T Corp.
    Inventor: Anthony T. Fiory
  • Patent number: 5305416
    Abstract: In a process for heating, e.g., a semiconductor wafer within a processing chamber, the wafer is exposed to a flux of electromagnetic radiation from lamps energized by alternating electric current. The surface temperature of the wafer is measured, and responsively, the radiation flux is controlled. The temperature measurement procedure includes collecting radiation propagating away from the wafer in a first light-pipe probe, collecting radiation propagating toward the wafer in a second light-pipe probe and detecting radiation collected in the respective probes. This procedure further involves determining, in the signal received from each probe, a magnitude of a time-varying component resulting from time-variations of the energizing current, and combining at least these magnitude according to a mathematical expression from which the temperature can be inferred. At least some of the radiation collected by the second probe is collected after reflection from a diffusely reflecting surface.
    Type: Grant
    Filed: April 2, 1993
    Date of Patent: April 19, 1994
    Assignee: AT&T Bell Laboratories
    Inventor: Anthony T. Fiory
  • Patent number: 5132280
    Abstract: A method of forming a superconductive metal oxide film on a substrate is disclosed. The method comprises depositing a metal layer on the substrate and heat treating the metal layer in an oxygen-containing atmosphere such that the oxide film is formed therefrom. The metal layer is deposited such that it is substantially free of reactive constituents, e.g., oxygen and/or fluorine, and such that it contains all the metal constitutents that are to be contained in the oxide film. Advantageously, the metal layer is deposited such that the various metal constituents (e.g., Y, Ba, and Cu) are substantially mixed. The inventive method simplifies deposition control since the densities of the metal deposits are well known and constant, and permits relatively rapid deposition (e.g., by DC sputtering) since the targets are not subject to oxidation.
    Type: Grant
    Filed: September 25, 1987
    Date of Patent: July 21, 1992
    Assignee: AT&T Bell Laboratories
    Inventors: Anthony T. Fiory, Michael Gurvitch
  • Patent number: 4861393
    Abstract: A molecular beam epitaxy method of growing Ge.sub.x Si.sub.1-x films on silicon substrate is described. Semiconductor heterostructures using Ge.sub.x Si.sub.1-x layers grown on either Ge or Si substrates are described.
    Type: Grant
    Filed: May 28, 1987
    Date of Patent: August 29, 1989
    Assignee: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: John C. Bean, Leonard C. Feldman, Anthony T. Fiory
  • Patent number: 4529455
    Abstract: A molecular beam epitaxy method of growing Ge.sub.x Si.sub.1-x films on silicon substrate is described.
    Type: Grant
    Filed: October 28, 1983
    Date of Patent: July 16, 1985
    Assignee: AT&T Bell Laboratories
    Inventors: John C. Bean, Leonard C. Feldman, Anthony T. Fiory