Patents by Inventor Antoine Negiz

Antoine Negiz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772561
    Abstract: A process for selective hydrogenation of hydrocarbons is presented. The process uses a catalyst to selectively hydrogenate acetylenes and diolefins to increase the monoolefins in a product stream. The catalyst in the process includes a layered structure with an inert inner core and an outer layer bonded to the inner core, where the outer layer is a metal oxide and has at least two metals deposited on the outer layer.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 8, 2014
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Gregory J. Gajda, Dean E. Rende
  • Publication number: 20140187831
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: UOP LLC
    Inventors: Antoine Negiz, Manuela Serban, Kurt M. VandenBussche, Mark D. Moser
  • Publication number: 20140187832
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche
  • Publication number: 20140163274
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8748685
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8716540
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 6, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8679321
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Manuela Serban, Kurt M. VandenBussche, Mark D. Moser
  • Patent number: 8680351
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8679320
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche
  • Publication number: 20140058157
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more aromatic methylating agents to form a product having a mole ratio of methyl to phenyl of at least about 0.1:1 greater than the feed.
    Type: Application
    Filed: October 30, 2013
    Publication date: February 27, 2014
    Applicant: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul T. Barger
  • Publication number: 20140058149
    Abstract: High efficiency processes for producing olefins, alkynes, and hydrogen co-production from light hydrocarbons are disclosed. In one version, the method includes the steps of combusting hydrogen and oxygen in a combustion zone of a pyrolytic reactor to create a combustion gas stream, transitioning a velocity of the combustion gas stream from subsonic to supersonic in an expansion zone of the pyrolytic reactor, injecting a light hydrocarbon into the supersonic combustion gas stream to create a mixed stream including the light hydrocarbon, transitioning the velocity of the mixed stream from supersonic to subsonic in a reaction zone of the pyrolytic reactor to produce acetylene, and catalytically hydrogenating the acetylene in a hydrogenation zone to produce ethylene. In certain embodiments, the carbon efficiency is improved using methanation techniques.
    Type: Application
    Filed: July 22, 2013
    Publication date: February 27, 2014
    Inventors: Antoine Negiz, Robert B. James, Carl J. Stevens, Paul T. Barger
  • Publication number: 20140058179
    Abstract: A pyrolytic reactor comprising a fuel injection zone, a combustion zone adjacent to the fuel injections zone, an expansion zone adjacent to the combustion zone, a feedstock injection zone comprising a plurality of injection nozzles and disposed adjacent to the expansion zone, a mixing zone configured to mix a carrier stream and feed material and disposed adjacent to the feedstock injection zone, and a reaction zone adjacent to the mixing zone. The plurality of injection nozzles are radially distributed in a first assembly defining a first plane transverse to the feedstock injection zone and in a second assembly transverse to the feedstock injection zone.
    Type: Application
    Filed: July 22, 2013
    Publication date: February 27, 2014
    Inventors: Carl J. Stevens, Antoine Negiz, Vinayender Kuchana
  • Publication number: 20140058162
    Abstract: A reactor comprising a thermal barrier surrounding a combustion zone. The reactor further comprises a cooling jacket inner wall and a binder disposed between the cooling jacket inner wall and the thermal barrier, and a cooling jacket outer wall, wherein the cooling jacket inner wall and the cooling jacket outer wall define a cooling channel. The reactor further comprises an outer reactor wall disposed over the cooling jacket outer wall, wherein the outer reactor wall is impermeable and is configured to contain high pressure gas within the reactor.
    Type: Application
    Filed: July 22, 2013
    Publication date: February 27, 2014
    Inventors: Antoine Negiz, Robert B. James, Carl J. Stevens, Donald L. Mittendorf
  • Patent number: 8633344
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for aromatic transformation reactions. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents at least one meta, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, “t” is the mole ratio of N from the organic structure directing agent or agents to (Al+E), and E is a framework element such as gallium. The process involves contacting at least a first aromatic with the coherently grown composites of TUN and IMF zeotypes to produce at least a second aromatic.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: January 21, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller, Antoine Negiz
  • Patent number: 8609917
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more non-aromatic compounds to convert about 90%, by weight, of one or more C6+ non-aromatic compounds.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Patent number: 8609919
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1?xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8598395
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more aromatic methylating agents to form a product having a mole ratio of methyl to phenyl of at least about 0.1:1 greater than the feed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 3, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Publication number: 20130316895
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Application
    Filed: August 7, 2013
    Publication date: November 28, 2013
    Applicant: UOP LLC
    Inventors: Antoine Negiz, Hui Wang
  • Patent number: 8563795
    Abstract: One exemplary embodiment can be a process using an aromatic methylating agent. Generally, the process includes reacting an effective amount of the aromatic methylating agent having at least one of an alkane, a cycloalkane, an alkane radical, and a cycloalkane radical with one or more aromatic compounds. As such, at least one of the one or more aromatic compounds may be converted to one or more higher methyl substituted aromatic compounds to provide a product having a greater mole ratio of methyl to phenyl than a feed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 22, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Patent number: 8518242
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Hui Wang