Patents by Inventor Antoine PUYGRANIER

Antoine PUYGRANIER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900996
    Abstract: A micromechanical sensor, including: a substrate; a movable mass element sensitive in three spatial directions; two x-lateral electrodes for detecting a lateral x-deflection of the movable mass element; two y-lateral electrodes for detecting a lateral y-deflection of the movable mass element; z-electrodes for detecting a z-deflection of the movable mass element; each lateral electrode being fastened on the substrate with the aid of a fastening element; the fastening elements of all electrodes being formed close to a connection element of the movable mass element to the substrate.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 26, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Johannes Classen, Markus Linck-Lescanne
  • Patent number: 10656173
    Abstract: A micromechanical structure for an acceleration sensor includes a movable seismic mass including electrodes, the seismic mass being attached to a substrate with the aid of an attachment element; first fixed counter electrodes attached to a first carrier plate; and second fixed counter electrodes attached to a second carrier plate, where the counter electrodes, together with the electrodes, are situated nested in one another in a sensing plane of the micromechanical structure, and where the carrier plates are situated nested in one another in a plane below the sensing plane, each being attached to a central area of the substrate with the aid of an attachment element.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: May 19, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Patent number: 10598686
    Abstract: A micromechanical z-acceleration sensor, including a seismic mass element including a torsion spring; the torsion spring including an anchor element, with the aid of which the torsion spring is connected to a substrate; the torsion spring being connected at both ends to the seismic mass element with the aid of a bar-shaped connecting element designed as normal with respect to the torsion spring in the plane of the seismic mass element.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: March 24, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Publication number: 20190107553
    Abstract: A micromechanical sensor, including: a substrate; a movable mass element sensitive in three spatial directions; two x-lateral electrodes for detecting a lateral x-deflection of the movable mass element; two y-lateral electrodes for detecting a lateral y-deflection of the movable mass element; z-electrodes for detecting a z-deflection of the movable mass element; each lateral electrode being fastened on the substrate with the aid of a fastening element; the fastening elements of all electrodes being formed close to a connection element of the movable mass element to the substrate.
    Type: Application
    Filed: May 4, 2017
    Publication date: April 11, 2019
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Johannes Classen, Markus Linck-Lescanne
  • Publication number: 20180328959
    Abstract: A micromechanical structure for an acceleration sensor includes a movable seismic mass including electrodes, the seismic mass being attached to a substrate with the aid of an attachment element; first fixed counter electrodes attached to a first carrier plate; and second fixed counter electrodes attached to a second carrier plate, where the counter electrodes, together with the electrodes, are situated nested in one another in a sensing plane of the micromechanical structure, and where the carrier plates are situated nested in one another in a plane below the sensing plane, each being attached to a central area of the substrate with the aid of an attachment element.
    Type: Application
    Filed: November 14, 2016
    Publication date: November 15, 2018
    Inventors: Johannes Classen, Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Patent number: 10017376
    Abstract: Measures are described which contribute simply and reliably to the mechanical decoupling of a MEMS functional element from the structure of a MEMS element. The MEMS element includes at least one deflectable functional element, which is implemented in a layered structure on a MEMS substrate, so that a space exists between the layered structure and the MEMS substrate, at least in the area of the functional element. According to the invention, a stress decoupling structure is formed in the MEMS substrate in the form of a blind hole-like trench structure, which is open to the space between the layered structure and the MEMS substrate and extends into the MEMS substrate to only a predefined depth, so that the rear side of the MEMS substrate is closed, at least in the area of the trench structure.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: July 10, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Jochen Reinmuth, Mirko Hattass, Ralf Reichenbach, Antoine Puygranier
  • Publication number: 20180106828
    Abstract: A micromechanical z-acceleration sensor, including a seismic mass element including a torsion spring; the torsion spring including an anchor element, with the aid of which the torsion spring is connected to a substrate; the torsion spring being connected at both ends to the seismic mass element with the aid of a bar-shaped connecting element designed as normal with respect to the torsion spring in the plane of the seismic mass element.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 19, 2018
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Publication number: 20170096331
    Abstract: Measures are described which contribute simply and reliably to the mechanical decoupling of a MEMS functional element from the structure of a MEMS element. The MEMS element includes at least one deflectable functional element, which is implemented in a layered structure on a MEMS substrate, so that a space exists between the layered structure and the MEMS substrate, at least in the area of the functional element. According to the invention, a stress decoupling structure is formed in the MEMS substrate in the form of a blind hole-like trench structure, which is open to the space between the layered structure and the MEMS substrate and extends into the MEMS substrate to only a predefined depth, so that the rear side of the MEMS substrate is closed, at least in the area of the trench structure.
    Type: Application
    Filed: May 29, 2015
    Publication date: April 6, 2017
    Inventors: Johannes Classen, Jochen Reinmuth, Mirko Hattass, Ralf Reichenbach, Antoine Puygranier
  • Publication number: 20170081177
    Abstract: An interposer is provided which is made up of a flat carrier substrate including at least one front wiring plane, in which front terminal pads are formed for mounting a component on the interposer, including at least one rear wiring plane, in which rear terminal pads are formed for mounting on a component carrier, the front terminal pads and the rear terminal pads being arranged offset from each other; and including vias for electrical connection of the at least one front wiring plane and the at least one rear wiring plane. The carrier substrate includes at least one edge section and at least one center section, which are at least largely mechanically decoupled via a stress-decoupling structure. The front terminal pads are arranged exclusively on the center section for mounting the component, while the rear terminal pads are arranged exclusively on the edge section for mounting on a component carrier.
    Type: Application
    Filed: May 29, 2015
    Publication date: March 23, 2017
    Applicant: Robert Bosch GmbH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Kramer, Jochen Reinmuth, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel, Ralf Reichenbach, Friedjof Heuck, Antoine Puygranier
  • Patent number: 9416000
    Abstract: To implement cavities having different internal pressures in joining two semiconductor elements, at least one of the two element surfaces to be joined is structured, so that at least one circumferential bonding frame area is recessed or elevated in comparison with at least one other circumferential bonding frame area. At least one connecting layer should then be applied to this structured element surface and at least two circumferential bonding frames should be structured out of this connecting layer on different surface levels of the element surface. The topography created in the element surface permits sequential bonding in which multiple cavities between the two elements may be successively hermetically sealed, so that a defined internal pressure prevails in each of the cavities.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 16, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Ralf Reichenbach, Jens Frey, Antoine Puygranier
  • Publication number: 20150353347
    Abstract: To implement cavities having different internal pressures in joining two semiconductor elements, at least one of the two element surfaces to be joined is structured, so that at least one circumferential bonding frame area is recessed or elevated in comparison with at least one other circumferential bonding frame area. At least one connecting layer should then be applied to this structured element surface and at least two circumferential bonding frames should be structured out of this connecting layer on different surface levels of the element surface. The topography created in the element surface permits sequential bonding in which multiple cavities between the two elements may be successively hermetically sealed, so that a defined internal pressure prevails in each of the cavities.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Christoph Schelling, Ralf Reichenbach, Jens Frey, Antoine Puygranier
  • Publication number: 20150353345
    Abstract: Method for on-chip stress decoupling to reduce stresses in a vertical hybrid integrated component including MEMS and ASIC elements and to mechanical decoupling of the MEMS structure. The MEMS/ASIC elements are mounted above each other via at least one connection layer and form a chip stack. On the assembly side, at least one connection area is formed for the second level assembly and for external electrical contacting of the component on a component support. At least one flexible stress decoupling structure is formed in one element surface between the assembly side and the MEMS layered structure including the stress-sensitive MEMS structure, in at least one connection area to the adjacent element component of the chip stack or to the component support, the stress decoupling structure being configured so that the connection material does not penetrate into the stress decoupling structure and flexibility of the stress decoupling structure is ensured.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Friedjof HEUCK, Ralf REICHENBACH, Daniel Christoph MEISEL, Lars TEBJE, Mirko HATTASS, Jochen REINMUTH, Torsten KRAMER, Johannes CLASSEN, Reinhard NEUL, Antoine PUYGRANIER