Patents by Inventor Anton E. Suprun

Anton E. Suprun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8382644
    Abstract: A training device for diaphragmal breathing exercises, the device including (a) a beaker having a substantially cylindrical shape, with a bottom on one end and an opening on the other end; (b) an inner chamber within the beaker, the inner chamber having a bottom end and an open end on the same side as the open end of the beaker; (c) a lid having inner and outer circumferential ridges, wherein the lid fittingly mounts over the open end of beaker using an outer ridge and fittingly mounts over the inner chamber using the inner ridge; and (d) the lid further having a tubular coupling portion. A breathing tube is fittingly coupled to the tubular coupling portion on one end. A mouthpiece mounted on the other end of the breathing tube. The bottom end of the inner chamber has a stepped shape with a plurality of openings on each step. The lid has a plurality of openings.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 26, 2013
    Inventor: Anton E. Suprun
  • Patent number: 7296469
    Abstract: A method of measuring acceleration includes suspending an inertial body using a magnetic fluid; generating a magnetic field within the magnetic fluid; modulating the magnetic field to counteract a change in position of the inertial body relative to sources of the magnetic field due to acceleration; and calculating the acceleration based on the modulation. The calculating step derives the acceleration based on an amount of current through drive coils required for the modulation. The acceleration includes linear acceleration and/or angular acceleration. The drive coils include permanent magnets, electromagnets, or a combination of a permanent magnet and an electromagnet. Sensing coils can be used for detecting the displacement of the inertial body. Each sensing coil can be positioned substantially within a corresponding drive coil. The inertial body can be non-magnetic, weakly magnetic, or have a ferromagnetic coating.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: November 20, 2007
    Assignee: Innalabs Technologies, Inc.
    Inventors: Dmitri V. Simonenko, Anton E. Suprun, Yuri I. Romanov
  • Patent number: 7295184
    Abstract: A computer input device includes a magnetized fluid and an inertial body within the magnetized fluid. A signal converter provides angular acceleration information based on behavior of the inertial body. The computer input device can be attached to a Virtual Reality Suit, or can be used to control computer-generated graphical objects. The inertial body can be non-magnetic. The body can be solid or hollow. Electromagnets and/or permanent magnets can be used for magnetizing the fluid. Magnetic coils sense the changes in the magnetic flux lines. Signals from the magnetic coils are used by the signal converter to calculate the angular acceleration. A housing encloses the magnetized fluid and the inertial body.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: November 13, 2007
    Assignee: Innalabs Technologies, Inc.
    Inventors: Anton E. Suprun, Dmitri V. Simonenko, Yuri I. Romanov
  • Patent number: 7292223
    Abstract: A location tracking device utilizing an acceleration sensor is described. The acceleration sensor includes an inertial body in magnetic fluid that is contained in a closed volume vessel. The tracking device may be used for tracking objects, people, animals, and the like. The tracking device may be utilized as a back-up system to a GPS system such that when signal from a GPS receiver are unavailable, the location tracking device may provide positional information about the location of the object.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: November 6, 2007
    Assignee: Innalabs Technologies, Inc.
    Inventors: Anton E. Suprun, Dmitri V. Simonenko
  • Patent number: 7178399
    Abstract: A housing for a magnetofluidic sensor where the sensor has a plurality of drive magnet assemblies, magnetic fluid and an inertial body. The housing has a plurality of ports for securing respective drive magnet assemblies, such that a portion of each drive magnet assembly is positioned within the housing proximate the magnetic fluid. Each drive magnet assembly includes a magnetic field source for creating a magnetic field within the magnetic fluid for acting upon the inertial body. Each drive magnet assembly also includes a sensing element for sensing movement of the inertial body within the magnetic fluid.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: February 20, 2007
    Assignee: Innalabs Technologies, Inc.
    Inventors: Dmitri Simonenko, Anton E. Suprun, Yuri I. Romanov
  • Patent number: 7061469
    Abstract: A computer input device and method used to input coordinates and three-dimensional graphical information into a computer. The device includes an acceleration sensor that has a fixed volume vessel containing a magnetic fluid. A non-magnetic inertial body is located in the magnetic fluid. Three magnetic field sources are located on three perpendicular axes where each magnetic field source has an output for connection to a computer. Changes in Q-factors and inductance of electromagnetic coils aligned on the X, Y, and Z-axis of the sensor are used to compute linear and angular acceleration components of any movement involving the sensor which permits three-dimensional coordinates to be provided in real-time.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: June 13, 2006
    Assignee: Innalabs Technologies, Inc.
    Inventors: Anton E. Suprun, Dmitri V. Simonenko
  • Patent number: 6985134
    Abstract: A computer input device used to input coordinates and three-dimensional graphical information into a computer. The device includes an acceleration sensor that has a fixed volume vessel containing a magnetic fluid. A non-magnetic inertial body is located in the magnetic fluid. Three magnetic field source are located on three perpendicular axes where each magnetic field source has an output for connection to a computer.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: January 10, 2006
    Assignee: Innalabs Technologies, Inc.
    Inventors: Anton E. Suprun, Dmitri V Simonenko, Yuri I. Romanov