Patents by Inventor Anton Vasserman

Anton Vasserman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12072884
    Abstract: A monitoring system is configured to distinguish between two types of alert rules— namely, invariant alert rules and variant alert rules—and to apply a different method of alert rule evaluation to each, wherein each alert rule evaluation method deals with the issue of latent data ingestion in a different way. By tailoring the alert rule evaluation method to the type of alert rule being evaluated, the system can apply an optimized approach for each type of alert rule in terms of achieving a trade-off between alert latency, alert accuracy, and cost of goods sold. In an embodiment, the system utilizes a machine learning model to classify a query associated with an alert rule as either increasing or non-increasing. Then, based on the query classification and a condition associated with the alert rule, the system determines if the alert rule is invariant or variant.
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: August 27, 2024
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yaniv Lavi, Rachel Lemberg, Anton Vasserman, Yair Yizhak Ripshtos, Dor Bank, Ofri Kleinfeld, Raphael Fettaya, Linoy Liat Barel
  • Publication number: 20230359625
    Abstract: A monitoring system is configured to distinguish between two types of alert rules— namely, invariant alert rules and variant alert rules—and to apply a different method of alert rule evaluation to each, wherein each alert rule evaluation method deals with the issue of latent data ingestion in a different way. By tailoring the alert rule evaluation method to the type of alert rule being evaluated, the system can apply an optimized approach for each type of alert rule in terms of achieving a trade-off between alert latency, alert accuracy, and cost of goods sold. In an embodiment, the system utilizes a machine learning model to classify a query associated with an alert rule as either increasing or non-increasing. Then, based on the query classification and a condition associated with the alert rule, the system determines if the alert rule is invariant or variant.
    Type: Application
    Filed: April 12, 2023
    Publication date: November 9, 2023
    Inventors: Yaniv LAVI, Rachel LEMBERG, Anton VASSERMAN, Yair Yizhak RIPSHTOS, Dor BANK, Ofri KLEINFELD, Raphael FETTAYA, Linoy Liat BAREL
  • Patent number: 11640401
    Abstract: A monitoring system is configured to distinguish between two types of alert rules—namely, invariant alert rules and variant alert rules—and to apply a different method of alert rule evaluation to each, wherein each alert rule evaluation method deals with the issue of latent data ingestion in a different way. By tailoring the alert rule evaluation method to the type of alert rule being evaluated, the system can apply an optimized approach for each type of alert rule in terms of achieving a trade-off between alert latency, alert accuracy, and cost of goods sold. In an embodiment, the system utilizes a machine learning model to classify a query associated with an alert rule as either increasing or non-increasing. Then, based on the query classification and a condition associated with the alert rule, the system determines if the alert rule is invariant or variant.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: May 2, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yaniv Lavi, Rachel Lemberg, Anton Vasserman, Yair Yizhak Ripshtos, Dor Bank, Ofri Kleinfeld, Raphael Fettaya, Linoy Liat Barel
  • Publication number: 20210374130
    Abstract: A monitoring system is configured to distinguish between two types of alert rules—namely, invariant alert rules and variant alert rules—and to apply a different method of alert rule evaluation to each, wherein each alert rule evaluation method deals with the issue of latent data ingestion in a different way. By tailoring the alert rule evaluation method to the type of alert rule being evaluated, the system can apply an optimized approach for each type of alert rule in terms of achieving a trade-off between alert latency, alert accuracy, and cost of goods sold. In an embodiment, the system utilizes a machine learning model to classify a query associated with an alert rule as either increasing or non-increasing. Then, based on the query classification and a condition associated with the alert rule, the system determines if the alert rule is invariant or variant.
    Type: Application
    Filed: August 10, 2020
    Publication date: December 2, 2021
    Inventors: Yaniv Lavi, Rachel Lemberg, Anton Vasserman, Yair Yizhak Ripshtos, Dor Bank, Ofri Kleinfeld, Raphael Fettaya, Linoy Liat Barel