Patents by Inventor Antonella SCIUTO

Antonella SCIUTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821886
    Abstract: A system for detecting the concentration of metal particles of at least one first material, which includes a detector with: a semiconductor body including a cathode region, delimited by a front surface; and an anode structure made of metal material, which extends over a part of the cathode region, leaving part of the front surface exposed. The anode structure and the part of the cathode region form a first contact of a Schottky type. The exposed part of the front surface can access the metal particles.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 21, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto
  • Patent number: 11670730
    Abstract: An avalanche photodiode for detecting ultraviolet radiation, including: a silicon carbide body having a first type of conductivity, which is delimited by a front surface and forms a cathode region; an anode region having a second type of conductivity, which extends into the body starting from the front surface and contacts the cathode region; and a guard ring having the second type of conductivity, which extends into the body starting from the front surface and surrounds the anode region.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: June 6, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Dario Sutera
  • Publication number: 20220238738
    Abstract: The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Antonello SANTANGELO, Massimo Cataldo MAZZILLO, Salvatore CASCINO, Giuseppe LONGO, Antonella SCIUTO
  • Patent number: 11335823
    Abstract: The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 17, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Antonello Santangelo, Massimo Cataldo Mazzillo, Salvatore Cascino, Giuseppe Longo, Antonella Sciuto
  • Publication number: 20210320219
    Abstract: An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Massimo Cataldo MAZZILLO, Valeria CINNERA MARTINO, Antonella SCIUTO
  • Patent number: 11133424
    Abstract: An optical sensor includes a light-emitter device formed in a body of solid-state material with wide band gap having a surface. The light-emitter device includes a cathode region having a first conductivity type and an anode region having a second conductivity type. The anode region extends into the cathode region from the surface of the body. The anode region and the cathode region define a junction, and the cathode region has, near the junction, a peak defectiveness area accommodating vacancies in the crystalline structure due to non-bound ions or atoms of Group IV or VIII of the periodic table, which may include carbon, silicon, helium, argon, or neon. The vacancies are at a higher concentration with respect to mean values of vacancies in the anode region and in the cathode region. For example, the vacancies in the peak defectiveness area have a concentration of at least 1013 atoms/cm?3.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: September 28, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Massimo Cataldo Mazzillo, Pietro Paolo Barbarino, Domenico Pierpaolo Mello, Antonella Sciuto
  • Patent number: 11049990
    Abstract: An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: June 29, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Massimo Cataldo Mazzillo, Valeria Cinnera Martino, Antonella Sciuto
  • Publication number: 20200158710
    Abstract: A system for detecting the concentration of metal particles of at least one first material, which includes a detector with: a semiconductor body including a cathode region, delimited by a front surface; and an anode structure made of metal material, which extends over a part of the cathode region, leaving part of the front surface exposed. The anode structure and the part of the cathode region form a first contact of a Schottky type. The exposed part of the front surface can access the metal particles.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Massimo Cataldo MAZZILLO, Antonella SCIUTO
  • Publication number: 20200052147
    Abstract: An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 13, 2020
    Inventors: Massimo Cataldo Mazzillo, Valeria Cinnera Martino, Antonella Sciuto
  • Publication number: 20200028001
    Abstract: An optical sensor includes a light-emitter device formed in a body of solid-state material with wide band gap having a surface. The light-emitter device includes a cathode region having a first conductivity type and an anode region having a second conductivity type. The anode region extends into the cathode region from the surface of the body. The anode region and the cathode region define a junction, and the cathode region has, near the junction, a peak defectiveness area accommodating vacancies in the crystalline structure due to non-bound ions or atoms of Group IV or VIII of the periodic table, which may include carbon, silicon, helium, argon, or neon. The vacancies are at a higher concentration with respect to mean values of vacancies in the anode region and in the cathode region. For example, the vacancies in the peak defectiveness area have a concentration of at least 1013 atoms/cm?3.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 23, 2020
    Inventors: Massimo Cataldo MAZZILLO, Pietro Paolo BARBARINO, Domenico Pierpaolo MELLO, Antonella SCIUTO
  • Publication number: 20200013915
    Abstract: An avalanche photodiode for detecting ultraviolet radiation, including: a silicon carbide body having a first type of conductivity, which is delimited by a front surface and forms a cathode region; an anode region having a second type of conductivity, which extends into the body starting from the front surface and contacts the cathode region; and a guard ring having the second type of conductivity, which extends into the body starting from the front surface and surrounds the anode region.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Dario Sutera
  • Patent number: 10461209
    Abstract: An avalanche photodiode for detecting ultraviolet radiation, including: a silicon carbide body having a first type of conductivity, which is delimited by a front surface and forms a cathode region; an anode region having a second type of conductivity, which extends into the body starting from the front surface and contacts the cathode region; and a guard ring having the second type of conductivity, which extends into the body starting from the front surface and surrounds the anode region.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 29, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Dario Sutera
  • Publication number: 20190305159
    Abstract: The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Antonello SANTANGELO, Massimo Cataldo MAZZILLO, Salvatore CASCINO, Giuseppe LONGO, Antonella SCIUTO
  • Patent number: 10416142
    Abstract: An optoelectronic device for detecting volatile organic compounds is described, including a die with a semiconductor body, the die forming a MOSFET transistor and at least one photodiode. The optoelectronic device is optically couplable to an optical source that emits radiation with a spectrum at least partially overlapping the absorption spectrum range of the semiconductor body. The MOSFET transistor is planar and includes a gate region and a catalytic region that is arranged on the gate region such that, in the presence of a gas mixture including volatile organic compounds, the MOSFET transistor can be biased to generate an electrical signal indicating the overall concentration of the gas mixture. The photodiode generates a photocurrent that is a function of the concentration of one or more polycyclic aromatic hydrocarbons present in the gas mixture.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: September 17, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto
  • Patent number: 10371572
    Abstract: An integrated electronic device for detecting the composition of ultraviolet radiation includes a cathode region formed by a semiconductor material with a first type of conductivity. A first anode region and a second anode region are laterally staggered with respect to one another and are set in contact with the cathode region. The cathode region and the first anode region form a first sensor. The cathode region and the second anode region form a second sensor. In a spectral range formed by the UVA band and by the UVB band, the first and second sensors have, respectively, a first spectral responsivity and a second spectral responsivity different from one another.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 6, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Paolo BadalĂ 
  • Patent number: 10209125
    Abstract: A semiconductor device for flame detection, including: a semiconductor body having a first conductivity type conductivity, delimited by a front surface and forming a cathode region; an anode region having a second conductivity type conductivity, which extends within the semiconductor body, starting from the front surface, and forms, together with the cathode region, the junction of a photodiode that detect ultraviolet radiation emitted by the flames; a supporting dielectric region; and a sensitive region, which is arranged on the supporting dielectric region and varies its own resistance as a function of the infrared radiation emitted by the flames.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 19, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto
  • Publication number: 20180284090
    Abstract: An optoelectronic device for detecting volatile organic compounds is described, including a die with a semiconductor body, the die forming a MOSFET transistor and at least one photodiode. The optoelectronic device is optically couplable to an optical source that emits radiation with a spectrum at least partially overlapping the absorption spectrum range of the semiconductor body. The MOSFET transistor is planar and includes a gate region and a catalytic region that is arranged on the gate region such that, in the presence of a gas mixture including volatile organic compounds, the MOSFET transistor can be biased to generate an electrical signal indicating the overall concentration of the gas mixture. The photodiode generates a photocurrent that is a function of the concentration of one or more polycyclic aromatic hydrocarbons present in the gas mixture.
    Type: Application
    Filed: October 12, 2017
    Publication date: October 4, 2018
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto
  • Patent number: 10062798
    Abstract: A photodiode structure is based on the use of a double junction sensitive to different wavelength bands based on a magnitude of a reverse bias applied to the photodiode. The monolithic integration of a sensor with double functionality in a single chip allows realization of a low cost ultra-compact sensing element in a single packaging useful in many applications which require simultaneous or spatially synchronized detection of optical photons in different spectral regions.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 28, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Dario Sutera
  • Publication number: 20180202859
    Abstract: A semiconductor device for flame detection, including: a semiconductor body having a first conductivity type conductivity, delimited by a front surface and forming a cathode region; an anode region having a second conductivity type conductivity, which extends within the semiconductor body, starting from the front surface, and forms, together with the cathode region, the junction of a photodiode that detect ultraviolet radiation emitted by the flames; a supporting dielectric region; and a sensitive region, which is arranged on the supporting dielectric region and varies its own resistance as a function of the infrared radiation emitted by the flames.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Inventors: Massimo Cataldo MAZZILLO, Antonella SCIUTO
  • Publication number: 20180188106
    Abstract: An integrated electronic device for detecting the composition of ultraviolet radiation includes a cathode region formed by a semiconductor material with a first type of conductivity. A first anode region and a second anode region are laterally staggered with respect to one another and are set in contact with the cathode region. The cathode region and the first anode region form a first sensor. The cathode region and the second anode region form a second sensor. In a spectral range formed by the UVA band and by the UVB band, the first and second sensors have, respectively, a first spectral responsivity and a second spectral responsivity different from one another.
    Type: Application
    Filed: February 20, 2018
    Publication date: July 5, 2018
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Paolo BadalĂ