Patents by Inventor Antonije M. Radojevic

Antonije M. Radojevic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230021386
    Abstract: An Optical Coherence Tomography receiver may include prisms, polarizing beam splitters, reflectors, lenses, and a photodetector array arranged in a compact package. Sample and reference beams are combined into an interference beam and split in two. The two resulting interference beams are then split into two polarization sates each. The optical path lengths for both pairs of interference beams with the same polarization state are equal or nearly equal.
    Type: Application
    Filed: October 6, 2022
    Publication date: January 26, 2023
    Inventors: Muhammad K. Al-Qaisi, Tomas Sedlacek, Joseph T. Traynor, Antonije M. Radojevic, Todd Schernig, Sahar Hosseinzadeh Kassani
  • Patent number: 11490804
    Abstract: An Optical Coherence Tomography receiver may include prisms, polarizing beam splitters, reflectors, lenses, and a photodetector array arranged in a compact package. Sample and reference beams are combined into an interference beam and split in two. The two resulting interference beams are then split into two polarization sates each. The optical path lengths for both pairs of interference beams with the same polarization state are equal or nearly equal.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 8, 2022
    Assignee: Alcon Inc.
    Inventors: Muhammad K Al-Qaisi, Tomas Sedlacek, Joseph T. Traynor, Antonije M. Radojevic, Todd Schernig, Sahar Hosseinzadeh Kassani
  • Publication number: 20200163546
    Abstract: An Optical Coherence Tomography receiver may include prisms, polarizing beam splitters, reflectors, lenses, and a photodetector array arranged in a compact package. Sample and reference beams are combined into an interference beam and split in two. The two resulting interference beams are then split into two polarization sates each. The optical path lengths for both pairs of interference beams with the same polarization state are equal or nearly equal.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 28, 2020
    Inventors: Muhammad K. Al-Qaisi, Tomas Sedlacek, Joseph T. Traynor, Antonije M. Radojevic, Todd Schernig, Sahar Hosseinzadeh Kassani
  • Patent number: 6641662
    Abstract: A method for fabricating ultra-thin single-crystal metal oxide wave retarder plates, such as a zeroth-order X-cut single-crystal LiNbO3 half-wave plate, comprises ion implanting a bulk birefringent metal oxide crystal at normal incidence through a planar major surface thereof to form a damage layer at a predetermined distance d below the planar major surface, and detaching a single-crystal wave retarder plate from the bulk crystal by either chemically etching away the damage layer or by subjecting the bulk crystal having the damage layer to a rapid temperature increase to effect thermally induced snap-off detachment of the wave retarder plate. The detached wave retarder plate has a predetermined thickness d dependent on the ion implantation energy.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: November 4, 2003
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Antonije M. Radojevic, Richard M. Osgood, Jr., Miguel Levy
  • Patent number: 6540827
    Abstract: A method is provided for detaching a single-crystal film from an epilayer/substrate or bulk crystal structure. The method includes the steps of implanting ions into the crystal structure to form a damage layer within the crystal structure at an implantation depth below a top surface of the crystal structure, and chemically etching the damage layer to effect detachment the single-crystal film from the crystal structure. The thin film may be detached by subjecting the crystal structure with the ion implanted damage layer to a rapid temperature increase without chemical etching. The method of the present invention is especially useful for detaching single-crystal metal oxide films from metal oxide crystal structures. Methods for enhancing the crystal slicing etch-rate are also disclosed.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: April 1, 2003
    Assignee: Trustees of Columbia University in the City of New York
    Inventors: Miguel Levy, Richard M. Osgood, Jr., Antonije M. Radojevic
  • Publication number: 20030010275
    Abstract: A method for fabricating ultra-thin single-crystal metal oxide wave retarder plates, such as a zeroth-order X-cut single-crystal LiNbO3 half-wave plate, comprises ion implanting a bulk birefringent metal oxide crystal at normal incidence through a planar major surface thereof to form a damage layer at a predetermined distance d below the planar major surface, and detaching a single-crystal wave retarder plate from the bulk crystal by either chemically etching away the damage layer or by subjecting the bulk crystal having the damage layer to a rapid temperature increase to effect thermally induced snap-off detachment of the wave retarder plate. The detached wave retarder plate has a predetermined thickness d dependent on the ion implantation energy.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 16, 2003
    Inventors: Antonije M. Radojevic, Richard M. Osgood, Miguel Levy
  • Patent number: 6503321
    Abstract: A method is provided for detaching a single-crystal film from an epilayer/substrate or bulk crystal structure. The method includes the steps of implanting ions into the crystal structure to form a damage layer within the crystal structure at an implantation depth below a top surface of the crystal structure, and chemically etching the damage layer to effect detachment the single-crystal film from the crystal structure. The thin film may be detached by subjecting the crystal structure with the ion implanted damage layer to a rapid temperature increase without chemical etching. The method of the present invention is especially useful for detaching single-crystal metal oxide films from metal oxide crystal structures. Methods for enhancing the crystal slicing etch-rate are also disclosed.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: January 7, 2003
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Miguel Levy, Richard M. Osgood, Jr., Antonije M. Radojevic
  • Publication number: 20020053318
    Abstract: A method is provided for detaching a single-crystal film from an epilayer/substrate or bulk crystal structure. The method includes the steps of implanting ions into the crystal structure to form a damage layer within the crystal structure at an implantation depth below a top surface of the crystal structure, and chemically etching the damage layer to effect detachment the single-crystal film from the crystal structure. The thin film may be detached by subjecting the crystal structure with the ion implanted damage layer to a rapid temperature increase without chemical etching. The method of the present invention is especially useful for detaching single-crystal metal oxide films from metal oxide crystal structures. Methods for enhancing the crystal slicing etch-rate are also disclosed.
    Type: Application
    Filed: April 9, 1999
    Publication date: May 9, 2002
    Inventors: MIGUEL LEVY, RICHARD M. OSGOOD, ANTONIJE M. RADOJEVIC