Patents by Inventor Antonio A. Gellineau

Antonio A. Gellineau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11099137
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: August 24, 2021
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 11073487
    Abstract: Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 27, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Bykanov, Nikolay Artemiev, Joseph A. Di Regolo, Antonio Gellineau, Alexander Kuznetsov, Andrei Veldman, John Hench
  • Publication number: 20200393386
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 10816486
    Abstract: Multilayer targets enabling fast and accurate, absolute calibration and alignment of X-ray based measurement systems are described herein. The multilayer calibration targets have very high diffraction efficiency and are manufactured using fast, low cost production techniques. Each target includes a multilayer structure built up with pairs of X-ray transparent and X-ray absorbing materials. The layers of the multilayer target structure is oriented parallel to an incident X-ray beam. Measured diffraction patterns indicate misalignment in position and orientation between the incident X-Ray beam and the multilayer target. In another aspect, a composite multilayer target includes at least two multilayer structures arranged adjacent one another along a direction aligned with the incident X-ray beam, adjacent one another along a direction perpendicular to the incident X-ray beam, or a combination thereof. In some embodiments, the multilayer structures are spatially separated from one another by a gap distance.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 27, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Nikolay Artemiev, Antonio Gellineau, Alexander Bykanov, Alexander Kuznetsov
  • Patent number: 10794839
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 6, 2020
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Publication number: 20200271595
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Publication number: 20200025554
    Abstract: A system, method and computer program product are provided for selecting signals to be measured utilizing a metrology tool that optimizes the precision of the measurement. The technique includes the steps of simulating a set of signals for measuring one or more parameters of a metrology target. A normalized Jacobian matrix corresponding to the set of signals is generated, a subset of signals in the simulated set of signals is selected that optimizes a performance metric associated with measuring the one or more parameters of the metrology target based on the normalized Jacobian matrix, and a metrology tool is utilized to collect a measurement for each signal in the subset of signals for the metrology target. For a given number of signals collected by the metrology tool, this technique optimizes the precision of such measurements over conventional techniques that collect signals uniformly distributed over a range of process parameters.
    Type: Application
    Filed: November 28, 2016
    Publication date: January 23, 2020
    Inventors: Antonio A. Gellineau, Alexander Kuznetsov, John J. Hench, Andrei V. Shchegrov, Stilian Ivanov Pandev
  • Patent number: 10481111
    Abstract: Methods and systems for calibrating the location of x-ray beam incidence onto a specimen in an x-ray scatterometry metrology system are described herein. The precise location of incidence of the illumination beam on the surface of the wafer is determined based on occlusion of the illumination beam by two or more occlusion elements. The center of the illumination beam is determined based on measured values of transmitted flux and a model of the interaction of the beam with each occlusion element. The position of the axis of rotation orienting a wafer over a range of angles of incidence is adjusted to align with the surface of wafer and intersect the illumination beam at the measurement location. A precise offset value between the normal angle of incidence of the illumination beam relative to the wafer surface and the zero angle of incidence as measured by the specimen positioning system is determined.
    Type: Grant
    Filed: October 21, 2017
    Date of Patent: November 19, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: John Hench, Antonio Gellineau, Nikolay Artemiev, Joseph A. Di Regolo
  • Publication number: 20190302039
    Abstract: Multilayer targets enabling fast and accurate, absolute calibration and alignment of X-ray based measurement systems are described herein. The multilayer calibration targets have very high diffraction efficiency and are manufactured using fast, low cost production techniques. Each target includes a multilayer structure built up with pairs of X-ray transparent and X-ray absorbing materials. The layers of the multilayer target structure is oriented parallel to an incident X-ray beam. Measured diffraction patterns indicate misalignment in position and orientation between the incident X-Ray beam and the multilayer target. In another aspect, a composite multilayer target includes at least two multilayer structures arranged adjacent one another along a direction aligned with the incident X-ray beam, adjacent one another along a direction perpendicular to the incident X-ray beam, or a combination thereof. In some embodiments, the multilayer structures are spatially separated from one another by a gap distance.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 3, 2019
    Inventors: Nikolay Artemiev, Antonio Gellineau, Alexander Bykanov, Alexander Kuznetsov
  • Publication number: 20180328868
    Abstract: Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 15, 2018
    Inventors: Alexander Bykanov, Nikolay Artemiev, Joseph A. Di Regolo, Antonio Gellineau, Alexander Kuznetsov, Andrei Veldman, John Hench
  • Publication number: 20180113084
    Abstract: Methods and systems for calibrating the location of x-ray beam incidence onto a specimen in an x-ray scatterometry metrology system are described herein. The precise location of incidence of the illumination beam on the surface of the wafer is determined based on occlusion of the illumination beam by two or more occlusion elements. The center of the illumination beam is determined based on measured values of transmitted flux and a model of the interaction of the beam with each occlusion element. The position of the axis of rotation orienting a wafer over a range of angles of incidence is adjusted to align with the surface of wafer and intersect the illumination beam at the measurement location. A precise offset value between the normal angle of incidence of the illumination beam relative to the wafer surface and the zero angle of incidence as measured by the specimen positioning system is determined.
    Type: Application
    Filed: October 21, 2017
    Publication date: April 26, 2018
    Inventors: John Hench, Antonio Gellineau, Nikolay Artemiev, Joseph A. Di Regolo
  • Patent number: 9267963
    Abstract: A high-bandwidth AFM probe having a diffraction grating characterized by a diffraction characteristic that monotonically changes along the length of the diffraction grating is disclosed. AFM probes in accordance with the present invention are capable of high-sensitivity performance over a broad range of operating conditions, such as operating wavelength and measurement media. A method for estimating at least one physical property of a surface based on high-frequency signal components in the output signal from a high-bandwidth AFM probe is also disclosed. The method enables determination of tip-surface interaction forces based on the relationship between a first motion of the base of the AFM probe and a second motion of the tip of the AFM probe.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 23, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Antonio A. Gellineau, Olav Solgaard, Karthik Vijayraghavan, Andrew Y J Wang, Manish J. Butte
  • Publication number: 20140130214
    Abstract: A fiber-facet AFM probe enabling high-resolution, high sensitivity measurement of a sample surface is presented. AFM probes in accordance with the present invention include an optically resonant cavity that is defined by two mirrors, at least one of which is a photonic-crystal mirror. One of the mirrors is movable and is mechanically coupled with an AFM tip such that a force imparted on the tip by an interaction with the sample surface induces a change in the cavity length of the optically resonant cavity and, therefore, its reflectivity.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 8, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Olav Solgaard, Antonio A. Gellineau, Xuan Wu, Jo Wonuk, Karthik Vijayraghavan