Patents by Inventor Antonio Chica Lara
Antonio Chica Lara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20140158942Abstract: A catalyst precursor for preparing a catalyst suitable for use in a sour water-gas shift process is described, including; 5 to 30% by weight of a catalytically active metal oxide selected from tungsten oxide and molybdenum oxide; 1 to 10% by weight of a promoter metal oxide selected from cobalt oxide and nickel oxide; and 1 to 15% by weight of an oxide of an alkali metal selected from sodium, potassium and caesium; supported on a titania catalyst support.Type: ApplicationFiled: May 22, 2012Publication date: June 12, 2014Applicant: Johnson Matthey Public Limited CompanyInventors: Peter Edward James Abbott, Martin Fowles, Antonio Chica Lara, Norman Macleod, Juan Jose Gonzalez Perez, Elaine Margaret Vass
-
Patent number: 8702974Abstract: A process for desulphurizing hydrocarbons includes passing a mixture of hydrocarbon and hydrogen over a hydrodesulphurization catalyst to convert organosulphur compounds present in the hydrocarbon to hydrogen sulphide, passing the resulting mixture over a hydrogen sulphide sorbent including zinc oxide to reduce the hydrogen sulphide content of the mixture, and passing the hydrogen sulphide-depleted mixture over a further desulphurization material. The further desulphurization material includes one or more nickel compounds, a zinc oxide support material, and optionally one or more promoter metal compounds of iron, cobalt, copper and precious metals. The desulphurization material has a nickel content in the range 0.3 to 20% by weight and a promoter metal compound content in the range 0 to 10% by weight.Type: GrantFiled: September 2, 2010Date of Patent: April 22, 2014Assignee: Johnson Matthey PLCInventors: Gordon Edward Wilson, Norman Macleod, Elaine Margaret Vass, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Patent number: 8314047Abstract: A process for the preparation of a desulfurization material includes: (i) forming a zinc/aluminium hydrotalcite composition, and (ii) calcining the composition to form a zinc oxide/alumina material, in which one or more nickel compounds are included in the hydrotalcite formation step, and/or are impregnated onto the hydrotalcite composition and/or the calcined zinc oxide/alumina material, and the resulting composition dried and recovered.Type: GrantFiled: February 25, 2009Date of Patent: November 20, 2012Assignee: Johnson Matthey PLCInventors: Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20120232322Abstract: A process for desulphurising hydrocarbons includes the steps of (i) passing a mixture of hydrocarbon and hydrogen over a hydrodesulphurisation catalyst to convert organosulphur compounds present in the hydrocarbon to hydrogen sulphide, (ii) passing the resulting mixture over a hydrogen sulphide sorbent including zinc oxide to reduce the hydrogen sulphide content of the mixture and (iii) passing the hydrogen sulphide-depleted mixture over a further desulphurisation material, where the further desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and optionally one or more promoter metal compounds selected from one or more compounds of iron, cobalt, copper and precious metals, the desulphurisation material having a nickel content in the range 0.3 to 20% by weight and a promoter metal content in the range 0 to 10% by weight.Type: ApplicationFiled: September 2, 2010Publication date: September 13, 2012Applicant: JOHNSON MATTHEY PLCInventors: Gordon Edward Wilson, Norman Macleod, Elaine Margaret Vass, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Patent number: 8236262Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: GrantFiled: February 25, 2009Date of Patent: August 7, 2012Assignee: Johnson Matthey PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20110014105Abstract: A particulate desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulphurisation material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulphurisation material may be used to desulphurise hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: ApplicationFiled: February 25, 2009Publication date: January 20, 2011Applicant: JOHNSON MATTHEY PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20110014103Abstract: A process for the preparation of a desulphurisation material includes: forming a zinc/aluminium hydrotalcite composition, and (ii) calcining the composition to form a zinc oxide/alumina material, in which one or more nickel compounds are included in the hydrotalcite formation step, and/or are impregnated onto the hydrotalcite composition and/or the calcined zinc oxide/alumina material, and the resulting composition dried and recovered.Type: ApplicationFiled: February 25, 2009Publication date: January 20, 2011Applicant: JOHNSON MATTHEY PLCInventors: Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Patent number: 6555090Abstract: The invention deals with a microporous crystalline material, with a characteristic X-ray diffractogram, comprised of oxygen tetrahedra and a metal (T+4 and T+3) with the possibility of introducing surface acidity produced by the substitution in the lattice of some T+4 cations by T+3 cations, which gives rise to a structural charge deficiency that may be compensated by protons, Brönsted acidity, and/or high ratio radium charge cations, Lewis acidity; and the obtaining method thereof, based on the preparation of a gel, its hydrothermal treatment under controlled conditions and the treatment of the resulting laminar material with a solution of an organic compound, a swollen material being obtained, which is subjected to a treatment for the formation of interlaminar pillars of polymeric oxides, obtaining a pillared material that maintains the separation between the sheets, even after calcination.Type: GrantFiled: July 6, 2001Date of Patent: April 29, 2003Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de ValenciaInventors: Antonio Chica Lara, Avelino Corma Canós, Vicente Fornés Segúi, Urbano Díaz Morales
-
Patent number: 6469226Abstract: The invention concerns a microporous oxide material ITQ6, with a characteristic X-ray diffraction pattern, and surface areas for which microporous surface area may be of at least 20 m2/g the external surface area may be at least 350 m2/g and the total surface area may be at least 400 m2/g. It may be made via preparation of gel, its hydrothermal treatment, and the treatment of the resulting material with a swelling solution followed by at least partial delamination e.g., by mechanical agitation or ultrasonics. The final oxide material is calcined and, in its acid form or combined with metals, especially noble metals, is useful as catalyst for the isomerization of n-butene to isobutene, or in dewaxing and isodewaxing processes and as a catalytic cracking catalyst or as an additive in FCC catalysts.Type: GrantFiled: February 5, 2001Date of Patent: October 22, 2002Assignee: BP Oil International LimitedInventors: Antonio Chica Lara, Urbano Diaz Morales, Vicente Fornes Segui, Avelino Corma Canos
-
Publication number: 20020016251Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.Type: ApplicationFiled: August 2, 2001Publication date: February 7, 2002Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
-
Patent number: 6306790Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica: alumina ratio, and are prepared from microemulsions containing surfactants.Type: GrantFiled: May 20, 1999Date of Patent: October 23, 2001Assignee: ExxonMobil Chemical Patents Inc.Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
-
Patent number: 6294081Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the hydroprocessing of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.Type: GrantFiled: May 20, 1999Date of Patent: September 25, 2001Assignee: ExxonMobil Chemical Patents, Inc.Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Ian A. Cody, William J. Murphy, Sandra J. Linek
-
Patent number: 6288298Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.Type: GrantFiled: May 20, 1999Date of Patent: September 11, 2001Assignee: ExxonMobil Chemical Patents Inc.Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
-
Publication number: 20010000066Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.Type: ApplicationFiled: November 30, 2000Publication date: March 29, 2001Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis