Patents by Inventor Antonio Peramo

Antonio Peramo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9044347
    Abstract: A hybrid bioelectrical interface (HBI) device can be an implantable device comprising an abiotic component operable to transmit charge via electrons or ions; a biological component interfacing with the neural tissue, the biological component being sourced from biologic, biologically-derived, or bio-functionalized material; and a conjugated polymer component that together provide a way to chronically interface living neural tissue with electronic devices for extended durations (e.g. greater than 10 years). In some embodiments, conjugated polymers provide a functional electrical interface for charge transfer and signal transduction between the nervous system and an electronic device (e.g. robotic prosthetic limb, retinal implant, microchip).
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: June 2, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Paul S. Cederna, Brent M. Egeland, Mohammad Reza Abidian, Antonio Peramo, Melanie G. Urbanchek, Daryl R. Kipke, Sarah Richardson-Burns, David C. Martin, Eugene D. Daneshvar
  • Publication number: 20140249645
    Abstract: A hybrid bioelectrical interface (HBI) device can be an implantable device comprising an abiotic component operable to transmit charge via electrons or ions; a biological component interfacing with the neural tissue, the biological component being sourced from biologic, biologically-derived, or bio-functionalized material; and a conjugated polymer component that together provide a means to chronically interface living neural tissue with electronic devices for extended durations (e.g. greater than 10 years). In some embodiments, conjugated polymers provide a functional electrical interface for charge transfer and signal transduction between the nervous system and an electronic device (e.g. robotic prosthetic limb, retinal implant, microchip).
    Type: Application
    Filed: August 15, 2012
    Publication date: September 4, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: PAUL S. CEDERNA, BRENT M. EGELAND, MOHAMMAD REZA ABIDIAN, ANTONIO PERAMO, MELANIE G. URBANCHEK, DARYL R. KIPKE, SARAH RICHARDSON-BURNS, DAVID C. MARTIN, EUGENE D. DANESHVAR
  • Publication number: 20090292325
    Abstract: A hybrid bioelectrical interface (HBI) device can be an implantable device comprising an abiotic component operable to transmit charge via electrons or ions; a biological component interfacing with the neural tissue, the biological component being sourced from biologic, biologically-derived, or bio-functionalized material; and a conjugated polymer component that together provide a means to chronically interface living neural tissue with electronic devices for extended durations (e.g. greater than 10 years). In some embodiments, conjugated polymers provide a functional electrical interface for charge transfer and signal transduction between the nervous system and an electronic device (e.g. robotic prosthetic limb, retinal implant, microchip).
    Type: Application
    Filed: April 29, 2009
    Publication date: November 26, 2009
    Inventors: Paul S. Cederna, Brent M. Egeland, Mohammad Reza Abidian, Antonio Peramo, Melanie G. Urbancheck, Daryl A. Kipke, Sarah Richardson-Burns, David C. Martin
  • Publication number: 20090198184
    Abstract: A percutaneous biomedical device comprising a body having a lumen extending longitudinally at least partially through the body, an implantable interface region disposed on the body, the implantable interface region having a plurality of radially extending conduits through the body, each of the conduits are in fluid communication with the lumen and in fluid communication with an exit port. The exit ports extrude a skin-interface composition between the subject's skin and the percutaneous biomedical device. Methods for implanting a percutaneous biomedical device includes implanting a percutaneous biomedical device percutaneously in a subject and aligning the exit ports of the implantable interface region between the epidermis and the hypodermis skin layers of the subject.
    Type: Application
    Filed: February 5, 2009
    Publication date: August 6, 2009
    Inventors: David C. Martin, Antonio Peramo, Steven A. Goldstein