Patents by Inventor Antony Christopher Routledge

Antony Christopher Routledge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120837
    Abstract: Circuits and methods for selectable conversion ratio power converters that include low-dropout (LDO) power supplies adapted to select voltage inputs based on the selected conversion ratio while achieving high efficiency. The LDO power supplies limit current through power FETs of power converters, thereby mitigating or eliminating potentially damaging events. In some embodiments, first and second full gate-drive LDOs have “wired-OR” outputs which may power a target circuit such as a pre-driver (and optionally, a level-shifter) coupled to the gate of a power FET. In some embodiments, first and second reduced gate-drive LDOs have “wired-OR” outputs that may power a final driver coupled to the gate of a power FET. Some embodiments have dual full gate-drive LDOs that power a target circuit such as a pre-driver (and optionally, a level-shifter), while dual reduced gate-drive LDOs that power a final driver coupled to the gate of the power FET.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 11, 2024
    Inventors: Antony Christopher Routledge, Satish Kumar Vangara
  • Patent number: 11942860
    Abstract: Circuits and methods to mitigate or eliminate potentially damaging events (e.g., damaging current spikes from in-rush current, charge transfer current, short circuits, etc.) in DC-DC power converters. Embodiments enable dynamic switching of conversion ratios in reconfigurable power converters while under load without turning off the power converter circuitry or suspending switching of the charge pump power switches. Embodiments selectively increase the ON resistance, RON, for at least some power FETs in a power converter by actively controlling the driver voltage to the gates of the power FETs. During normal operation, the power FET driver voltage may be set to overdrive the FET gate to lower RON to a desired level that allows high current flow. For other scenarios, the power FET driver voltage may be reduced so as to increase RON while ON and thus impede current flow to provide protection against potentially damaging events.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: March 26, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Antony Christopher Routledge
  • Patent number: 11936371
    Abstract: Circuits and methods that limit current through power FETs of power converter to reduce damaging current in-rush events, independent of switching frequency, device mismatches, and PVT variations. Embodiments utilize a closed-loop feedback circuit and/or a calibrated compensation circuit to regulate, substantially independent of frequency, the control voltage VGATE applied to a power FET gate. In a reduced gate-drive mode, connecting a feedback or compensation circuit to the gate of an LDO source-follower FET allows the gate voltage to be regulated to control the LDO output voltage to a final inverter coupled to the gate of a power FET so that VGATE is adjusted to provide a reduced gate-drive to the power FET; connecting to the output of the LDO allows the LDO output voltage to the final inverter to be directly regulated to adjust VGATE; connecting to the gate of the power FET allows VGATE to be directly set.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: March 19, 2024
    Assignee: pSemi Corporation
    Inventors: Satish Kumar Vangara, Antony Christopher Routledge, Gregory Szczeszynski, Xiaowu Sun
  • Patent number: 11909316
    Abstract: Circuits and methods for protecting the switches of charge pump-based power converters from damage if a VOUT short circuit event occurs and/or if VIN falls rapidly with respect to VX or VOUT. A general embodiment includes a VX Detection Block coupled to the core block of a power converter. The VX Detection Block is coupled to VX and to a control circuit that disables operations of an associated converter circuit upon detection of large, rapid falls in VX during the dead time between clock phase signals, thereby prevent damaging current spikes. Some embodiments include a VIN Detection Block configured to detect and prevent excessive in-rush current due to rapidly falling values of VIN to the power converter. The VIN Detection Block is coupled to VIN, and to VX or VOUT in some embodiments, and to a control circuit to that disables operation of an associated converter circuit.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: February 20, 2024
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge
  • Publication number: 20230120452
    Abstract: Circuits and methods for protecting the switches of charge pump-based power converters from damage if a VOUT short circuit event occurs and/or if VIN falls rapidly with respect to VX or VOUT. A general embodiment includes a VX Detection Block coupled to the core block of a power converter. The VX Detection Block is coupled to VX and to a control circuit that disables operations of an associated converter circuit upon detection of large, rapid falls in VX during the dead time between clock phase signals, thereby prevent damaging current spikes. Some embodiments include a VIN Detection Block configured to detect and prevent excessive in-rush current due to rapidly falling values of VIN to the power converter. The VIN Detection Block is coupled to VIN, and to VX or VOUT in some embodiments, and to a control circuit to that disables operation of an associated converter circuit.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 20, 2023
    Inventor: Antony Christopher Routledge
  • Publication number: 20220385178
    Abstract: Circuits and methods to mitigate or eliminate potentially damaging events (e.g., damaging current spikes from in-rush current, charge transfer current, short circuits, etc.) in DC-DC power converters. Embodiments enable dynamic switching of conversion ratios in reconfigurable power converters while under load without turning off the power converter circuitry or suspending switching of the charge pump power switches. Embodiments selectively increase the ON resistance, RON, for at least some power FETs in a power converter by actively controlling the driver voltage to the gates of the power FETs. During normal operation, the power FET driver voltage may be set to overdrive the FET gate to lower RON to a desired level that allows high current flow. For other scenarios, the power FET driver voltage may be reduced so as to increase RON while ON and thus impede current flow to provide protection against potentially damaging events.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Inventor: Antony Christopher Routledge
  • Patent number: 11482931
    Abstract: Circuits and methods for protecting the switches of charge pump-based power converters from damage if a VOUT short circuit event occurs and/or if VIN falls rapidly with respect to VX or VOUT. A general embodiment includes a VX Detection Block coupled to the core block of a power converter. The VX Detection Block is coupled to VX and to a control circuit that disables operations of an associated converter circuit upon detection of large, rapid falls in VX during the dead time between clock phase signals, thereby prevent damaging current spikes. Some embodiments include a VIN Detection Block configured to detect and prevent excessive in-rush current due to rapidly falling values of VIN to the power converter. The VIN Detection Block is coupled to VIN, and to VX or VOUT in some embodiments, and to a control circuit to that disables operation of an associated converter circuit.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: October 25, 2022
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge
  • Patent number: 11283344
    Abstract: Circuits and methods for limiting excessive current in circuits (such as step-up DC-to-DC converter circuits) in which very low ohmic FETs (VLOFETs) are used in circuit pathways that are subjected to startup in-rush current. Embodiments include a current mirror driver circuit that can be coupled to the gates of a VLOFET to form a current mirror that limits current flow through the VLOFET. The current mirror driver circuit provides for pulsed operation so that a coupled VLOFET still toggles between an OFF state and a current limited mode, particularly during a startup period. By using the current mirror driver circuit in conjunction with VLOFETs in circuit pathways that are subjected to startup in-rush current, in-rush current can be regulated to an acceptable level. Notably, no additional impedances are required in circuit pathways that are subjected to startup in-rush current to limit in-rush current, thus avoiding loss of efficiency.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: March 22, 2022
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge
  • Publication number: 20210305818
    Abstract: A high efficiency concurrent bidirectional charge balancing circuit (BCBC) for battery balancing that does not require high voltage transistors and which automatically transfers charge from a higher voltage cell to a lower voltage cell within a battery pack of multiple series-connected cells using a bi-phase charge pump, which may be an adiabatic-enabled bi-phase charge pump. The BCBC requires no complex external control logic to determine how the BCBCs are to be connected, charge balancing is performed without disturbing the series connections of the cells in a battery pack, and there is constant charge balancing across the entire charge range of cells in a battery pack. Because each BCBC spans only two cells, the voltage across each BCBC is the sum of the voltages from only those two cells; accordingly, the BCBC scales up to a large number of cells without requiring increasingly larger and more expensive high voltage transistors.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Inventors: David Andrew Kilshaw, Antony Christopher Routledge, Nigel David Brooke, Mark Moffat
  • Publication number: 20210249955
    Abstract: Circuits and methods for protecting the switches of charge pump-based power converters from damage if a VOUT short circuit event occurs and/or if VIN falls rapidly with respect to VX or VOUT. A general embodiment includes a VX Detection Block coupled to the core block of a power converter. The VX Detection Block is coupled to VX and to a control circuit that disables operations of an associated converter circuit upon detection of large, rapid falls in VX during the dead time between clock phase signals, thereby prevent damaging current spikes. Some embodiments include a VIN Detection Block configured to detect and prevent excessive in-rush current due to rapidly falling values of VIN to the power converter. The VIN Detection Block is coupled to VIN, and to VX or VOUT in some embodiments, and to a control circuit to that disables operation of an associated converter circuit.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 12, 2021
    Inventor: Antony Christopher Routledge
  • Publication number: 20210226526
    Abstract: Circuits and methods for limiting excessive current in circuits (such as step-up DC-to-DC converter circuits) in which very low ohmic FETs (VLOFETs) are used in circuit pathways that are subjected to startup in-rush current. Embodiments include a current mirror driver circuit that can be coupled to the gates of a VLOFET to form a current mirror that limits current flow through the VLOFET. The current mirror driver circuit provides for pulsed operation so that a coupled VLOFET still toggles between an OFF state and a current limited mode, particularly during a startup period. By using the current mirror driver circuit in conjunction with VLOFETs in circuit pathways that are subjected to startup in-rush current, in-rush current can be regulated to an acceptable level. Notably, no additional impedances are required in circuit pathways that are subjected to startup in-rush current to limit in-rush current, thus avoiding loss of efficiency.
    Type: Application
    Filed: January 26, 2021
    Publication date: July 22, 2021
    Inventor: Antony Christopher Routledge
  • Patent number: 10910938
    Abstract: Circuits and methods for limiting excessive current in circuits (such as step-up DC-to-DC converter circuits) in which very low ohmic FETs (VLOFETs) are used in circuit pathways that are subjected to startup in-rush current. Embodiments include a current mirror driver circuit that can be coupled to the gates of a VLOFET to form a current mirror that limits current flow through the VLOFET. The current mirror driver circuit provides for pulsed operation so that a coupled VLOFET still toggles between an OFF state and a current limited mode, particularly during a startup period. By using the current mirror driver circuit in conjunction with VLOFETs in circuit pathways that are subjected to startup in-rush current, in-rush current can be regulated to an acceptable level. Notably, no additional impedances are required in circuit pathways that are subjected to startup in-rush current to limit in-rush current, thus avoiding loss of efficiency.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 2, 2021
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge
  • Publication number: 20200266696
    Abstract: Circuits and methods for limiting excessive current in circuits (such as step-up DC-to-DC converter circuits) in which very low ohmic FETs (VLOFETs) are used in circuit pathways that are subjected to startup in-rush current. Embodiments include a current mirror driver circuit that can be coupled to the gates of a VLOFET to form a current mirror that limits current flow through the VLOFET. The current mirror driver circuit provides for pulsed operation so that a coupled VLOFET still toggles between an OFF state and a current limited mode, particularly during a startup period. By using the current mirror driver circuit in conjunction with VLOFETs in circuit pathways that are subjected to startup in-rush current, in-rush current can be regulated to an acceptable level. Notably, no additional impedances are required in circuit pathways that are subjected to startup in-rush current to limit in-rush current, thus avoiding loss of efficiency.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 20, 2020
    Inventor: Antony Christopher Routledge
  • Patent number: 10594202
    Abstract: Circuits and methods for limiting excessive current in circuits (such as step-up DC-to-DC converter circuits) in which very low ohmic FETs (VLOFETs) are used in circuit pathways that are subjected to startup in-rush current. Embodiments include a current mirror driver circuit that can be coupled to the gates of a VLOFET to form a current mirror that limits current flow through the VLOFET. The current mirror driver circuit provides for pulsed operation so that a coupled VLOFET still toggles between an OFF state and a current limited mode, particularly during a startup period. By using the current mirror driver circuit in conjunction with VLOFETs in circuit pathways that are subjected to startup in-rush current, in-rush current can be regulated to an acceptable level. Notably, no additional impedances are required in circuit pathways that are subjected to startup in-rush current to limit in-rush current, thus avoiding loss of efficiency.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 17, 2020
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge