Patents by Inventor Antony Premkumar Peter

Antony Premkumar Peter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854803
    Abstract: A method for protecting a gate spacer when forming a FinFET structure, the method comprising: providing a fin with at least one dummy gate crossing the fin wherein a gate hardmask is present on top of the dummy gate; providing a gate spacer such that it is covering the dummy gate and the gate hardmask; recessing the gate spacer such that at least a part of the gate hardmask is exposed; selectively growing, by means of area selective deposition, extra capping material over the exposed part of the gate hardmask.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 26, 2023
    Assignee: IMEC VZW
    Inventors: Boon Teik Chan, Pierre Morin, Antony Premkumar Peter
  • Publication number: 20220084822
    Abstract: A method for protecting a gate spacer when forming a FinFET structure, the method comprising: providing a fin with at least one dummy gate crossing the fin wherein a gate hardmask is present on top of the dummy gate; providing a gate spacer such that it is covering the dummy gate and the gate hardmask; recessing the gate spacer such that at least a part of the gate hardmask is exposed; selectively growing, by means of area selective deposition, extra capping material over the exposed part of the gate hardmask.
    Type: Application
    Filed: July 9, 2021
    Publication date: March 17, 2022
    Inventors: Boon Teik Chan, Pierre Morin, Antony Premkumar Peter
  • Patent number: 11075083
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 27, 2021
    Assignee: IMEC vzw
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F. W. Dekkers
  • Publication number: 20200203168
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 25, 2020
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F.W. Dekkers
  • Patent number: 10090393
    Abstract: A method for fabricating a semiconductor structure is provided. The method includes providing a patterned substrate comprising a semiconductor region and a dielectric region. A conformal layer of a first dielectric material is deposited directly on the patterned substrate. A layer of a sacrificial material is deposited overlying the conformal layer of the first dielectric material. The sacrificial material is patterned, whereby a part of the semiconductor region remains covered by the patterned sacrificial material. A layer of a second dielectric material is deposited on the patterned substrate, thereby completely covering the patterned sacrificial material. A recess is formed in the second dielectric material by completely removing the patterned sacrificial material. The exposed conformal layer of the first dielectric material is removed selectively to the semiconductor region.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 2, 2018
    Assignee: IMEC VZW
    Inventors: Steven Demuynck, Zheng Tao, Boon Teik Chan, Liesbeth Witters, Marc Schaekers, Antony Premkumar Peter, Silvia Armini
  • Patent number: 9997458
    Abstract: Method for forming an interconnect structure, comprising the steps of: forming a recessed structure in a dielectric material on a substrate; at least partially filling said recessed structure with a metal chosen from the group consisting of copper, nickel and cobalt; introducing the substrate in a CVD reactor; bringing the substrate in the CVD reactor to a soak temperature and subsequently performing a soak treatment by supplying a germanium precursor gas to the CVD reactor at the soak temperature, thereby substantially completely converting the metal in the recessed structure to a germanide.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: June 12, 2018
    Assignee: IMEC vzw
    Inventors: Laure Elisa Carbonell, Antony Premkumar Peter, Marc Schaekers, Sven Van Elshocht, Zsolt Tokei
  • Publication number: 20170141199
    Abstract: A method for fabricating a semiconductor structure is provided. The method includes providing a patterned substrate comprising a semiconductor region and a dielectric region. A conformal layer of a first dielectric material is deposited directly on the patterned substrate. A layer of a sacrificial material is deposited overlying the conformal layer of the first dielectric material. The sacrificial material is patterned, whereby a part of the semiconductor region remains covered by the patterned sacrificial material. A layer of a second dielectric material is deposited on the patterned substrate, thereby completely covering the patterned sacrificial material. A recess is formed in the second dielectric material by completely removing the patterned sacrificial material. The exposed conformal layer of the first dielectric material is removed selectively to the semiconductor region.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 18, 2017
    Applicant: IMEC VZW
    Inventors: Steven Demuynck, Zheng Tao, Boon Teik Chan, Liesbeth Witters, Marc Schaekers, Antony Premkumar Peter, Silvia Armini
  • Patent number: 9633853
    Abstract: A method for forming an electrical contact to a semiconductor structure is provided. The method includes providing a semiconductor structure, providing a metal on an area of said semiconductor structure, wherein said area exposes a semiconductor material and is at least a part of a contact region, converting said metal to a Si-comprising or a Ge-comprising alloy, thereby forming said electrical contact on said area, wherein said converting is done by performing a vapor-solid reaction, whereby said semiconductor structure including said metal is subjected to a silicon-comprising precursor gas or a germanium-comprising precursor gas.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: April 25, 2017
    Assignee: IMEC VZW
    Inventors: Antony Premkumar Peter, Marc Schaekers
  • Publication number: 20160163648
    Abstract: A method for forming an electrical contact to a semiconductor structure is provided. The method includes providing a semiconductor structure, providing a metal on an area of said semiconductor structure, wherein said area exposes a semiconductor material and is at least a part of a contact region, converting said metal to a Si-comprising or a Ge-comprising alloy, thereby forming said electrical contact on said area, wherein said converting is done by performing a vapor-solid reaction, whereby said semiconductor structure including said metal is subjected to a silicon-comprising precursor gas or a germanium-comprising precursor gas.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 9, 2016
    Applicant: IMEC VZW
    Inventors: Antony Premkumar Peter, Marc Schaekers
  • Publication number: 20150130062
    Abstract: Method for forming an interconnect structure, comprising the steps of: forming a recessed structure in a dielectric material on a substrate; at least partially filling said recessed structure with a metal chosen from the group consisting of copper, nickel and cobalt; introducing the substrate in a CVD reactor; bringing the substrate in the CVD reactor to a soak temperature and subsequently performing a soak treatment by supplying a germanium precursor gas to the CVD reactor at the soak temperature, thereby substantially completely converting the metal in the recessed structure to a germanide.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 14, 2015
    Applicant: IMEC VZW
    Inventors: Laure Elisa Carbonell, Antony Premkumar Peter, Marc Schaekers, Sven Van Elshocht, Zsolt Tokei