Patents by Inventor Anubhav Kumar

Anubhav Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240119457
    Abstract: Methods and server systems for computing fraud risk scores for various merchants associated with an acquirer described herein. The method performed by a server system includes accessing merchant-related transaction data including merchant-related transaction indicators associated with a merchant from a transaction database. Method includes generating a merchant-related transaction features based on the merchant-related indicators. Method includes generating via risk prediction models, for a payment transaction with the merchant, merchant health and compliance risk scores, merchant terminal risk scores, merchant chargeback risk scores, and merchant activity risk scores based on the merchant-related transaction features. Method includes facilitating transmission of a notification message to an acquirer server associated with the merchant.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 11, 2024
    Applicant: MASTERCARD INTERNATIONAL INCORPORATED
    Inventors: Smriti Gupta, Adarsh Patankar, Akash Choudhary, Alekhya Bhatraju, Ammar Ahmad Khan, Amrita Kundu, Ankur Saraswat, Anubhav Gupta, Awanish Kumar, Ayush Agarwal, Brian M. McGuigan, Debasmita Das, Deepak Yadav, Diksha Shrivastava, Garima Arora, Gaurav Dhama, Gaurav Oberoi, Govind Vitthal Waghmare, Hardik Wadhwa, Jessica Peretta, Kanishk Goyal, Karthik Prasad, Lekhana Vusse, Maneet Singh, Niranjan Gulla, Nitish Kumar, Rajesh Kumar Ranjan, Ram Ganesh V, Rohit Bhattacharya, Rupesh Kumar Sankhala, Siddhartha Asthana, Soumyadeep Ghosh, Sourojit Bhaduri, Srijita Tiwari, Suhas Powar, Susan Skelsey
  • Patent number: 11936663
    Abstract: An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: March 19, 2024
    Assignee: Cisco Technology, Inc.
    Inventors: Navindra Yadav, Abhishek Ranjan Singh, Shashidhar Gandham, Ellen Christine Scheib, Omid Madani, Ali Parandehgheibi, Jackson Ngoc Ki Pang, Vimalkumar Jeyakumar, Michael Standish Watts, Hoang Viet Nguyen, Khawar Deen, Rohit Chandra Prasad, Sunil Kumar Gupta, Supreeth Hosur Nagesh Rao, Anubhav Gupta, Ashutosh Kulshreshtha, Roberto Fernando Spadaro, Hai Trong Vu, Varun Sagar Malhotra, Shih-Chun Chang, Bharathwaj Sankara Viswanathan, Fnu Rachita Agasthy, Duane Thomas Barlow
  • Publication number: 20240075614
    Abstract: The system can include a set of joints, a controller, and a model engine; and can optionally include a support structure and an end effector. Joints can include: a motor, a transmission mechanism, an input sensor, and an output sensor. The system can enable articulation of the plurality of joints.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: Abhinav Kumar, Aditya Bhatia, Akash Bansal, Anubhav Singh, Ashutosh Prakash, Aman Malhotra, Harshit Gaur, Prasang Srivasatava, Ashish Chauhan
  • Patent number: 9795924
    Abstract: In one embodiment, the present invention provides a central core element for a reverse osmosis separator assembly, the central core element comprising a pair of central core element components, each of said core element components comprising at least one porous exhaust conduit and at least one friction coupling, the friction couplings being configured to join said core element components to form a central core element defining a cavity configured to accommodate a first portion of a membrane stack assembly; wherein each core element component comprises a first section defining an exhaust cavity and a second section comprising a porous exhaust conduit, wherein said porous exhaust conduit comprises a removable wall member configured to form a substantial portion of a porous exhaust conduit wall.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 24, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jonathan Sebastian Janssen, Philip Paul Beauchamp, Todd Alan Anderson, Mohammed Mounir Mahmoud Shalaby, Wenpeng Liu, Anubhav Kumar
  • Patent number: 9376595
    Abstract: The present invention provides a method and apparatus for fabricating a separator assembly. The method comprises: providing a central core element comprising at least one concentrate exhaust conduit and at least one permeate exhaust conduit; disposing a first portion of a membrane stack assembly comprising a permeate carrier layer, a membrane layer, and a feed carrier layer within the central core element such that the concentrate exhaust conduit and permeate exhaust conduit are separated by the first portion of the membrane stack assembly; radially winding a second portion of the membrane stack assembly around the central core element; and sealing the wound assembly comprising two opposing end surfaces made of the membrane stack assembly by applying an adhesive on both end surfaces of the wound assembly; and applying a negative pressure inside the central core element so that the adhesive penetrates into the membrane stack assembly.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: June 28, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Chen Wang, Todd Alan Anderson, Su Lu, Hua Li, Zhen Liu, Jie Huang, Anubhav Kumar
  • Patent number: 9308921
    Abstract: A system is provided for use with, a wheeled vehicle. The system includes a media reservoir capable of holding a tractive material that includes particulates; a nozzle in fluid communication with the media reservoir; and a media valve in fluid communication with the media reservoir and the nozzle. The media valve is controllable between a first state in which the tractive material flows through the media valve and to the nozzle, and a second state in which the tractive material is prevented from flowing to the nozzle. In the first state, the nozzle receives the tractive material from the media reservoir and directs the tractive material to a contact surface such that the tractive material impacts the contact surface that is spaced from a wheel/surface interface. The system can modify the adhesion or the traction capability of the contact surface with regard to a subsequently contacting wheel.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: April 12, 2016
    Assignee: General Electric Company
    Inventors: Bret Dwayne Worden, Ajith Kuttannair Kumar, Matthew John Malone, Jennifer Lynn Coyne, Nikhil Subhashchandra Tambe, Milind Bharat Garule, Anubhav Kumar
  • Publication number: 20160090514
    Abstract: The present invention provides a method and apparatus for fabricating a separator assembly. The method comprises: providing a central core element comprising at least one concentrate exhaust conduit and at least one permeate exhaust conduit; disposing a first portion of a membrane stack assembly comprising a permeate carrier layer, a membrane layer, and a feed carrier layer within the central core element such that the concentrate exhaust conduit and permeate exhaust conduit are separated by the first portion of the membrane stack assembly; radially winding a second portion of the membrane stack assembly around the central core element; and sealing the wound assembly comprising two opposing end surfaces made of the membrane stack assembly by applying an adhesive on both end surfaces of the wound assembly; and applying a negative pressure inside the central core element so that the adhesive penetrates into the membrane stack assembly.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 31, 2016
    Inventors: Chen Wang, Todd Alan Anderson, Su Lu, Hua Li, Zhen Liu, Jie Huang, Anubhav Kumar
  • Patent number: 9233525
    Abstract: The present invention provides a method and apparatus for fabricating a separator assembly. The method comprises: providing a central core element comprising at least one concentrate exhaust conduit and at least one permeate exhaust conduit; disposing a first portion of a membrane stack assembly comprising a permeate carrier layer, a membrane layer, and a feed carrier layer within the central core element such that the concentrate exhaust conduit and permeate exhaust conduit are separated by the first portion of the membrane stack assembly; radially winding a second portion of the membrane stack assembly around the central core element; and sealing the wound assembly comprising two opposing end surfaces made of the membrane stack assembly by applying an adhesive on both end surfaces of the wound assembly; and applying a negative pressure inside the central core element so that the adhesive penetrates into the membrane stack assembly.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: January 12, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Chen Wang, Todd Alan Anderson, Su Lu, Hua Li, Zhen Liu, Jie Huang, Anubhav Kumar
  • Patent number: 8696904
    Abstract: A reverse osmosis element is provided. The reverse osmosis element includes a plurality of permeate tubes arranged to form a core frame. The reverse osmosis element further includes a plurality of leaves wound over the core frame. Each leaf of the plurality of leaves is coupled to one permeate tube of the plurality of permeate tubes. A retentate channel is defined by the plurality of permeate tubes of the core frame, and sealed by the plurality of leaves wound over the core frame. The reverse osmosis element includes first and a second end caps coupled to the plurality of permeate tubes. At least one of the first and the second end caps includes a retentate discharge port, and at least one of the first and second end caps includes one or more permeate discharge ports.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventors: Ramasamy Thiyagarajan, Todd Alan Anderson, Anubhav Kumar, Philip Paul Beauchamp, Gurumkonda Srinivasa Rao Hanumanth
  • Publication number: 20130292034
    Abstract: The present invention provides a method and apparatus for fabricating a separator assembly. The method comprises: providing a central core element comprising at least one concentrate exhaust conduit and at least one permeate exhaust conduit; disposing a first portion of a membrane stack assembly comprising a permeate carrier layer, a membrane layer, and a feed carrier layer within the central core element such that the concentrate exhaust conduit and permeate exhaust conduit are separated by the first portion of the membrane stack assembly; radially winding a second portion of the membrane stack assembly around the central core element; and sealing the wound assembly comprising two opposing end surfaces made of the membrane stack assembly by applying an adhesive on both end surfaces of the wound assembly; and applying a negative pressure inside the central core element so that the adhesive penetrates into the membrane stack assembly.
    Type: Application
    Filed: December 7, 2011
    Publication date: November 7, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chen Wang, Todd Alan Anderson, Su Lu, Hua Li, Zhen Liu, Jie Huang, Anubhav Kumar
  • Publication number: 20130206862
    Abstract: A system is provided for use with, a wheeled vehicle. The system includes a media reservoir capable of holding a tractive material that includes particulates; a nozzle in fluid communication with the media reservoir; and a media valve in fluid communication with the media reservoir and the nozzle. The media valve is controllable between a first state in which the tractive material flows through the media valve and to the nozzle, and a second state in which the tractive material is prevented from flowing to the nozzle. In the first state, the nozzle receives the tractive material from the media reservoir and directs the tractive material to a contact surface such that the tractive material impacts the contact surface that is spaced from a wheel/surface interface. The system can modify the adhesion or the traction capability of the contact surface with regard to a subsequently contacting wheel.
    Type: Application
    Filed: July 5, 2011
    Publication date: August 15, 2013
    Inventors: Bret Dwayne Worden, Ajith Kuttannair Kumar, Matthew John Malone, Jennifer Lynn Coyne, Nikhil Subhaschandra Tambe, Milind Bharat Garule, Anubhav Kumar
  • Patent number: 8448962
    Abstract: Systems and methods provide variable spring stiffness for weight management in a vehicle. One system includes a plurality of springs and a plurality of spring retainers configured to adjust a number of inactive coils of the plurality of springs. Additionally, a motor is provided that is connected to the plurality of spring retainers and configured to actuate the spring retainers to adjust the number of inactive coils of the plurality of springs. Further, a controller is provided that is coupled to motor to control the motor to actuate the spring retainers to adjust the number of inactive coils of the plurality of springs.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 28, 2013
    Assignee: General Electric Company
    Inventors: Amit Rajshekar Kalyani, Munishwar Ahuja, Anubhav Kumar, Ravi Kumar, Krishnarao Dhuri, Nikhil Subhashchandra Tambe
  • Publication number: 20130105023
    Abstract: In one embodiment, the present invention provides a central core element for a reverse osmosis separator assembly, the central core element comprising a pair of central core element components, each of said core element components comprising at least one porous exhaust conduit and at least one friction coupling, the friction couplings being configured to join said core element components to form a central core element defining a cavity configured to accommodate a first portion of a membrane stack assembly; wherein each core element component comprises a first section defining an exhaust cavity and a second section comprising a porous exhaust conduit, wherein said porous exhaust conduit comprises a removable wall member configured to form a substantial portion of a porous exhaust conduit wall.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jonathan Sebastian Janssen, Philip Paul Beauchamp, Todd Alan Anderson, Mohammed Mounir Mahmoud Shalaby, Wenpeng Liu, Anubhav Kumar
  • Publication number: 20120103891
    Abstract: A reverse osmosis element is provided. The reverse osmosis element includes a plurality of permeate tubes arranged to form a core frame. The reverse osmosis element further includes a plurality of leaves wound over the core frame. Each leaf of the plurality of leaves is coupled to one permeate tube of the plurality of permeate tubes. A retentate channel is defined by the plurality of permeate tubes of the core frame, and sealed by the plurality of leaves wound over the core frame. The reverse osmosis element includes first and a second end caps coupled to the plurality of permeate tubes. At least one of the first and the second end caps includes a retentate discharge port, and at least one of the first and second end caps includes one or more permeate discharge ports.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ramasamy Thiyagarajan, Todd Alan Anderson, Anubhav Kumar, Philip Paul Beauchamp, Gurumkonda Srinivasa Rao Hanumanth
  • Publication number: 20120103892
    Abstract: A separation module utilizing a feed spacer and a method for forming such a separation module are provided. A gasket comprising a flexible waterproof material is disposed on at least part of one or more edges of the feed spacer. A membrane layer is disposed on a first surface of the feed spacer. A permeate carrier is disposed on a surface of the membrane element opposite the feed spacer.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Philip Paul Beauchamp, Ramasamy Thiyagarajan, Anubhav Kumar, Todd Alan Anderson
  • Publication number: 20120049479
    Abstract: Systems and methods provide variable spring stiffness for weight management in a vehicle. One system includes a plurality of springs and a plurality of spring retainers configured to adjust a number of inactive coils of the plurality of springs. Additionally, a motor is provided that is connected to the plurality of spring retainers and configured to actuate the spring retainers to adjust the number of inactive coils of the plurality of springs. Further, a controller is provided that is coupled to motor to control the motor to actuate the spring retainers to adjust the number of inactive coils of the plurality of springs.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Amit Rajshekar Kalyani, Munishwar Ahuja, Anubhav Kumar, Ravi Kumar, Krishnarao Dhuri, Nikhil Subhashchandra Tambe
  • Publication number: 20110024150
    Abstract: A cooling mechanism for a current carrying conductor is proposed. The mechanism includes a first layer having plurality of micro fluidic channels. The first layer is thermally coupled to the current carrying conductor and configured to exchange thermal energy. A micro-pump is configured to circulate a heat exchange fluid through the micro fluidic channels to exchange thermal energy with the first layer and remove heat from the current carrying conductor. The heat exchange fluid and the current carrying conductor are electrically isolated.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Pradip Radhakrishnan Subramaniam, Thangavelu Asokan, Sudhakar Eddula Reddy, Adnan Kutubuddin Bohori, Vijay Kumar, Anubhav Kumar