Patents by Inventor Anupam Kumar Misra

Anupam Kumar Misra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175232
    Abstract: Standoff ultra-compact micro-Raman sensors configured to receive Raman scattering from a substance are disclosed. A laser device may be configured to transmit a laser at a first wavelength. The laser may be expanded to a predetermined size, focused through a lens, and made incident on an unknown substance. A filter may reflect the laser and Rayleigh scattering from the substance, but may permit Raman scattering and laser-induced fluorescence from the substance. One or more lenses and/or filters may receive and pass the Raman scattering and/or laser-induced fluorescence to a light sensor. The received Raman scattering and/or laser-induced fluorescence may be compared to known fingerprints of substances to determine an identity of the substance. The wavelength of the laser, the width of the laser, and other parameters may be varied based on the distance between the standoff ultra-compact micro-Raman sensor and the substance.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 16, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: M. Nural Abedin, Arthur T. Bradley, Anupam Kumar Misra, Yingxin Bai
  • Publication number: 20190219510
    Abstract: Standoff ultra-compact micro-Raman sensors configured to receive Raman scattering from a substance are disclosed. A laser device may be configured to transmit a laser at a first wavelength. The laser may be expanded to a predetermined size, focused through a lens, and made incident on an unknown substance. A filter may reflect the laser and Rayleigh scattering from the substance, but may permit Raman scattering and laser-induced fluorescence from the substance. One or more lenses and/or filters may receive and pass the Raman scattering and/or laser-induced fluorescence to a light sensor. The received Raman scattering and/or laser-induced fluorescence may be compared to known fingerprints of substances to determine an identity of the substance. The wavelength of the laser, the width of the laser, and other parameters may be varied based on the distance between the standoff ultra-compact micro-Raman sensor and the substance.
    Type: Application
    Filed: December 19, 2018
    Publication date: July 18, 2019
    Inventors: M. Nural Abedin, Arthur T. Bradley, Anupam Kumar Misra, Yingxin Bai
  • Patent number: 8264681
    Abstract: An spectrometer including Raman and LIBS spectroscopy capabilities is disclosed. The spectrometer includes a laser source configurable to produce a lased light directable towards a target substance, the laser source having a single wavelength and having sufficient power to cause a portion of the target to emit Raman scattering and sufficient to ablate a portion of the target substance to produce a plasma plume. A separate remote light collector is optically configurable to collect light emitted from the portion of the target emitting Raman scattering and from the portion of the target producing the plasma plume. A filter is optically coupled to the remote light collector to remove reflected light and Rayleigh-scattered light, and a spectroscope is optically coupled to the filter and configured to separate the collected and filtered light into a frequency spectrum comprising a Raman spectrum and a laser-induced breakdown spectrum. Finally, an electronic light sensor is used to record the frequency spectrum.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 11, 2012
    Assignee: University of Hawaii
    Inventors: Anupam Kumar Misra, Shiv Kumar Sharma, Paul Grandmont Lucey
  • Publication number: 20100171951
    Abstract: An spectrometer including Raman and LIBS spectroscopy capabilities is disclosed. The spectrometer includes a laser source configurable to produce a lased light directable towards a target substance, the laser source having a single wavelength and having sufficient power to cause a portion of the target to emit Raman scattering and sufficient to ablate a portion of the target substance to produce a plasma plume. A separate remote light collector is optically configurable to collect light emitted from the portion of the target emitting Raman scattering and from the portion of the target producing the plasma plume. A filter is optically coupled to the remote light collector to remove reflected light and Rayleigh-scattered light, and a spectroscope is optically coupled to the filter and configured to separate the collected and filtered light into a frequency spectrum comprising a Raman spectrum and a laser-induced breakdown spectrum. Finally, an electronic light sensor is used to record the frequency spectrum.
    Type: Application
    Filed: December 16, 2009
    Publication date: July 8, 2010
    Inventors: Anupam Kumar MISRA, Shiv Kumar SHARMA, Paul Grandmont LUCEY