Patents by Inventor Anuradha Biswas

Anuradha Biswas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11672910
    Abstract: Medical devices and methods and apparatuses for identifying fluids in a conduit of a device are provided. An exemplary medical device includes a reservoir for holding a fluid and a conduit for dispensing the fluid from the reservoir. Further, the medical device includes a spectroscopy device for examining the fluid.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 13, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Guangping Zhang, Sarnath Chattaraj, Anuradha Biswas Bhatia, Maria C. LoVerme, Afshin Bazargan
  • Patent number: 11253483
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: February 22, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan
  • Publication number: 20200230318
    Abstract: Medical devices and methods and apparatuses for identifying fluids in a conduit of a device are provided. An exemplary medical device includes a reservoir for holding a fluid and a conduit for dispensing the fluid from the reservoir. Further, the medical device includes a spectroscopy device for examining the fluid.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: Guangping Zhang, Sarnath Chattaraj, Anuradha Biswas Bhatia, Maria C. LoVerme, Afshin Bazargan
  • Patent number: 10646649
    Abstract: Medical devices and methods and apparatuses for identifying fluids in a conduit of a device are provided. An exemplary apparatus for identifying an infusate in a conduit of an infusion device includes a transmitter element for transmitting a beam of energy for interaction with the infusate. Further, the apparatus includes a receiver element for receiving a signal from the beam of energy after interaction with the infusate. Also, the apparatus includes an identifier element coupled to the receiver element for analyzing the signal to identify the infusate. The transmitter element and receiver element may form a spectroscopy device and may transmit and receive a beam of infrared light or near infrared light.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 12, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Guangping Zhang, Sarnath Chattaraj, Anuradha Biswas Bhatia, Maria C. LoVerme, Afshin Bazargan
  • Publication number: 20200009070
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Applicant: The Regents of the University of California
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan
  • Patent number: 10434069
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 8, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan
  • Publication number: 20190223771
    Abstract: Embodiments of the invention provide optimized polymeric surfaces adapted for use with implantable medical devices as well as methods for making and using such polymeric surfaces. These polymer surfaces have a constellation of features that function to inhibit or avoid an inflammatory immune response generated by implantable medical devices. Typical embodiments of the invention include an implantable glucose sensor used in the management of diabetes having a polymer surface with the disclosed constellation of features.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jia Yao, Daniel E. Pesantez, Anuradha Biswas Bhatia, Akhil Srinivasan, Guangping Zhang, Andrea Varsavsky, Raghavendhar Gautham
  • Publication number: 20180236169
    Abstract: Medical devices and methods and apparatuses for identifying fluids in a conduit of a device are provided. An exemplary apparatus for identifying an infusate in a conduit of an infusion device includes a transmitter element for transmitting a beam of energy for interaction with the infusate. Further, the apparatus includes a receiver element for receiving a signal from the beam of energy after interaction with the infusate. Also, the apparatus includes an identifier element coupled to the receiver element for analyzing the signal to identify the infusate. The transmitter element and receiver element may form a spectroscopy device and may transmit and receive a beam of infrared light or near infrared light.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: Guangping Zhang, Sarnath Chattaraj, Anuradha Biswas Bhatia, Maria C. LoVerme, Afshin Bazargan
  • Publication number: 20160175260
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Applicant: The Regents of the University of California
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan
  • Patent number: 9283194
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 15, 2016
    Assignee: The Regents of the University of California
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan
  • Publication number: 20110274682
    Abstract: A method for intracellular delivery of single proteins or other cargo molecules by encapsulation within nanocapsules formed by interfacial polymerization of one or more types of monomers and selected protease cleavable cross-linkers is provided. The thin positively charged capsules are readily brought into the cytosol of target cells by endocytosis. The capsules are degraded by the action of endogenous proteases or co-delivered proteases on the cross-linkers releasing the functional cargo unaltered. The cross-linkers can be adapted to be cleavable by specific enzymes selected from available intracellular enzymes within the target cell or co-delivered or self-cleaving when the cargo itself is a protease. The nanocapsules produced by the methods have been shown to have long-term stability, high cell penetration capability, low toxicity and efficient protease-modulated specific degradability without affecting cargo protein function.
    Type: Application
    Filed: April 18, 2011
    Publication date: November 10, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yi Tang, Zhen Gu, Yunfeng Lu, Ming Yan, Anuradha Biswas, Guoping Fan