Patents by Inventor ANURADHA MURTHY AGARWAL

ANURADHA MURTHY AGARWAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10571335
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 25, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Kazumi Wada, Anuradha Murthy Agarwal, Lionel Cooper Kimerling, Derek Kita, Junying Li, Fleur Jacolien Fok
  • Publication number: 20190285473
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Application
    Filed: February 14, 2019
    Publication date: September 19, 2019
    Inventors: Juejun Hu, Tian Gu, Kazumi Wada, Anuradha Murthy Agarwal, Lionel Cooper Kimerling, Derek Kita, Junying Li, Fleur Jacolien Fok
  • Publication number: 20190187061
    Abstract: A sensing apparatus includes a light source to transmit a light beam, an input switch, a first sensing element, a second sensing element, and a detector. The input switch receives the light beam and includes a phase change material having a first state and a second state. The first sensing element receives the light beam from the input switch when the phase change material is in the first state and produces a first change in the light beam in response to a presence of a first analyte. The second sensing element receives the light beam from the input switch when the phase change material is in the second state and produces a second change in the light beam in response to a presence of a second analyte. The detector detects the first change and/or the second change in the light beam.
    Type: Application
    Filed: December 7, 2018
    Publication date: June 20, 2019
    Inventors: Zhaohong HAN, Jianwei MU, Anuradha Murthy AGARWAL, Pao Tai LIN, Lionel Cooper KIMERLING
  • Patent number: 10240980
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: March 26, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Kazumi Wada, Anuradha Murthy Agarwal, Lionel Cooper Kimerling, Derek Matthew Kita, Junying Li, Fleur Jacolien Fok
  • Patent number: 9915785
    Abstract: A device includes a substrate, a pedestal extending from the substrate, and a ring resonator disposed on the pedestal above the substrate. The ring resonator has a resonance wavelength greater than 1.5 ?m and includes at least one of silicon and chalcogenide glass. The device can be used as a ring resonator sensor or a light source. The ring resonator is substantially transparent to mid-infrared radiation to reduce optical losses. The pedestal has a narrower width compared to the ring resonator to generate improved interaction between evanescent fields of light in the ring resonator and analytes nearby the ring resonator, thereby increasing sensing sensitivity. In addition, fabrication of the device is compatible with complementary metal-oxide-semiconductor (CMOS) processes and hence is amenable to large scale manufacturing.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: March 13, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Pao Tai Lin, Jurgen Michel, Anuradha Murthy Agarwal
  • Publication number: 20180024072
    Abstract: A sensing apparatus includes a light source to transmit a light beam, an input switch, a first sensing element, a second sensing element, and a detector. The input switch receives the light beam and includes a phase change material having a first state and a second state. The first sensing element receives the light beam from the input switch when the phase change material is in the first state and produces a first change in the light beam in response to a presence of a first analyte. The second sensing element receives the light beam from the input switch when the phase change material is in the second state and produces a second change in the light beam in response to a presence of a second analyte. The detector detects the first change and/or the second change in the light beam.
    Type: Application
    Filed: February 6, 2017
    Publication date: January 25, 2018
    Inventors: Zhaohong HAN, Jianwei MU, Anuradha Murthy AGARWAL, Pao Tai LIN, Lionel Cooper KIMERLING
  • Publication number: 20170299434
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Application
    Filed: May 23, 2017
    Publication date: October 19, 2017
    Inventors: Juejun Hu, Tian GU, Kazumi WADA, Anuradha Murthy AGARWAL, Lionel Cooper KIMERLING, Derek Matthew KITA, Junying LI, Fleur Jacolien FOK
  • Publication number: 20170242194
    Abstract: A device includes a substrate, a pedestal extending from the substrate, and a ring resonator disposed on the pedestal above the substrate. The ring resonator has a resonance wavelength greater than 1.5 ?m and includes at least one of silicon and chalcogenide glass. The device can be used as a ring resonator sensor or a light source. The ring resonator is substantially transparent to mid-infrared radiation to reduce optical losses. The pedestal has a narrower width compared to the ring resonator to generate improved interaction between evanescent fields of light in the ring resonator and analytes nearby the ring resonator, thereby increasing sensing sensitivity. In addition, fabrication of the device is compatible with complementary metal-oxide-semiconductor (CMOS) processes and hence is amenable to large scale manufacturing.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: Pao Tai LIN, Jurgen MICHEL, Anuradha Murthy AGARWAL
  • Patent number: 9046650
    Abstract: A chip-scale, air-clad semiconductor pedestal waveguide can be used as a mid-infrared (mid-IR) sensor capable of in situ monitoring of organic solvents and other analytes. The sensor uses evanescent coupling from a silicon or germanium waveguide, which is highly transparent in the mid-IR portion of the electromagnetic spectrum, to probe the absorption spectrum of fluid surrounding the waveguide. Launching a mid-IR beam into the waveguide exposed to a particular analyte causes attenuation of the evanescent wave's spectral components due to absorption by carbon, oxygen, hydrogen, and/or nitrogen bonds in the surrounding fluid. Detecting these changes at the waveguide's output provides an indication of the type and concentration of one or more compounds in the surrounding fluid. If desired, the sensor may be integrated onto a silicon substrate with a mid-IR light source and a mid-IR detector to form a chip-based spectrometer.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: June 2, 2015
    Assignee: The Massachusetts Institute of Technology
    Inventors: Pao Tai Lin, Yan Cai, Anuradha Murthy Agarwal, Lionel C. Kimerling
  • Patent number: 8928883
    Abstract: In certain embodiments, a system for detecting an agent includes a resonator device configured to receive an agent. The resonator device is also configured to transmit light received from a light source, the transmitted light having an altered peak wavelength due to the presence of the received agent. The system further includes a filter device configured to filter the transmitted light having the altered peak wavelength such that the transmitted light having the altered peak wavelength does not reach one or more detectors of a detector array configured to receive transmitted light not filtered by the filter device. The system further includes a processing system operable to determine that the one or more detectors of the detector array are not generating a signal, the absence of the signal being generated by the one or more detectors of the detector array indicating the presence of the agent.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Raytheon Company
    Inventors: Frank B. Jaworski, Justin Gordon Adams Wehner, Adam M. Kennedy, Darin S. Williams, Anuradha Murthy Agarwal, Juejun Hu
  • Publication number: 20140264030
    Abstract: A chip-scale, air-clad semiconductor pedestal waveguide can be used as a mid-infrared (mid-IR) sensor capable of in situ monitoring of organic solvents and other analytes. The sensor uses evanescent coupling from a silicon or germanium waveguide, which is highly transparent in the mid-IR portion of the electromagnetic spectrum (e.g., between ?=1.3 ?m and ?=6.5 ?m for silicon and ?=1.3 ?m and ?=12.0 ?m for germanium), to probe the absorption spectrum of the fluid surrounding the waveguide. Launching a mid-IR beam into the waveguide exposed to a particular analyte causes attenuation of the evanescent wave's spectral components due to absorption by carbon, oxygen, hydrogen, and/or nitrogen bonds in the surrounding fluid. Detecting these changes at the waveguide's output provides an indication of the type and concentration of one or more compounds in the surrounding fluid.
    Type: Application
    Filed: November 11, 2013
    Publication date: September 18, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: PAO TAI LIN, YAN CAI, ANURADHA MURTHY AGARWAL, LIONEL C. KIMERLING