Patents by Inventor Anusha Pokhriyal

Anusha Pokhriyal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605754
    Abstract: A transfer method includes providing a first light emitting diode on a first substrate, performing a partial laser liftoff of the first light emitting diode from the first substrate, laser bonding the first light emitting diode to the backplane after performing the partial laser liftoff, and separating the first substrate from the first light emitting diode after the laser bonding.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: March 14, 2023
    Assignee: NANOSYS, INC.
    Inventors: Timothy Gallagher, Anusha Pokhriyal
  • Publication number: 20210359186
    Abstract: A method includes transferring a first subset of the first LEDs from a first substrate to a first backplane to form first subpixels in pixel regions, transferring a first subset of the second LEDs to a second backplane and separating the first subset of the second LEDs from a second substrate to leave first vacancies on the second substrate, forming an additional electrically conductive material on a second subset of second LEDs located on the second substrate after transferring the first subset of the second LEDs to the second backplane, positioning the second substrate over the first backplane, such that the first subpixels are disposed in the first vacancies, and transferring the second subset of the second LEDs to a second subset of bonding structures on the first backplane to form second subpixels in the pixel regions, while a gap exists between the first subpixels and the second substrate.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 18, 2021
    Inventors: Saket CHADDA, Anusha POKHRIYAL, Zulal Tezcan OZEL
  • Publication number: 20210184072
    Abstract: A transfer method includes providing a first light emitting diode on a first substrate, performing a partial laser liftoff of the first light emitting diode from the first substrate, laser bonding the first light emitting diode to the backplane after performing the partial laser liftoff, and separating the first substrate from the first light emitting diode after the laser bonding.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Inventors: Timothy GALLAGHER, Anusha POKHRIYAL
  • Patent number: 10714464
    Abstract: Selective transfer of dies including semiconductor devices to a target substrate can be performed employing local laser irradiation. Coining of at least one set of solder material portions can be employed to provide a planar surface-to-surface contact and to facilitate bonding of adjoining pairs of bond structures. Laser irradiation on the solder material portions can be employed to sequentially bond selected pairs of mated bonding structures, while preventing bonding of devices not to be transferred to the target substrate. Additional laser irradiation can be employed to selectively detach bonded devices, while not detaching devices that are not bonded to the target substrate. The transferred devices can be pressed against the target substrate during a second reflow process so that the top surfaces of the transferred devices can be coplanar. Wetting layers of different sizes can be employed to provide a trapezoidal vertical cross-sectional profile for reflowed solder material portions.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: July 14, 2020
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Sharon N. Farrens, Timothy Gallagher
  • Patent number: 10707190
    Abstract: A backplane can have a non-planar top surface. Insulating material portions including planar top surface regions located within a same horizontal plane are formed over the backplane. A two-dimensional array of metal plate clusters is formed over the insulating material portions. Each of the metal plate clusters includes a plurality of metal plates. Each metal plate includes a horizontal metal plate portion overlying a planar top surface region and a connection metal portion connected to a respective metal interconnect structure in the backplane. A two-dimensional array of light emitting device clusters is bonded to the backplane through respective bonding structures. Each light emitting device cluster includes a plurality of light emitting devices overlying a respective metal plate cluster.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 7, 2020
    Assignee: GLO AB
    Inventors: Tsun Lau, Fariba Danesh, Timothy Gallagher, Anusha Pokhriyal
  • Patent number: 10693051
    Abstract: Light emitting devices can be disposed on the front side of a transparent backplane. A laser beam can be irradiated through the transparent backplane and onto a component located on the front side of the transparent backplane. In one embodiment, the component may be a solder material portion that is reflowed to bond the light emitting devices to the transparent backplane. In another embodiment, the component may be a solder material bonded to a defective bonded light emitting device. In this case, the laser irradiation can reflow the solder material to dissociate the defective bonded light emitting device from the transparent backplane. In yet another embodiment, the component may be a device component that is electrically modified by the laser irradiation.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 23, 2020
    Assignee: GLO AB
    Inventors: Sharon N. Farrens, Anusha Pokhriyal
  • Patent number: 10553571
    Abstract: Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 4, 2020
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Sharon N. Farrens
  • Publication number: 20190312015
    Abstract: A backplane can have a non-planar top surface. Insulating material portions including planar top surface regions located within a same horizontal plane are formed over the backplane. A two- dimensional array of metal plate clusters is formed over the insulating material portions. Each of the metal plate clusters includes a plurality of metal plates. Each metal plate includes a horizontal metal plate portion overlying a planar top surface region and a connection metal portion connected to a respective metal interconnect structure in the backplane. A two- dimensional array of light emitting device clusters is bonded to the backplane through respective bonding structures. Each light emitting device cluster includes a plurality of light emitting devices overlying a respective metal plate cluster.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Inventors: Tsun LAU, Fariba DANESH, Timothy Gallagher, Anusha Pokhriyal
  • Patent number: 10304810
    Abstract: A backplane optionally having stepped horizontal surfaces and optionally embedding metal interconnect structures is provided. First conductive bonding structures are formed on first stepped horizontal surfaces. First light emitting devices on a first transfer substrate are disposed on the first conductive bonding structures, and a first subset of the first light emitting devices is bonded to the first conductive bonding structures. Laser irradiation can be employed to selectively disconnect the first subset of the first light emitting devices from the first transfer substrate while a second subset of the first light emitting devices remains attached to the first transfer substrate.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: May 28, 2019
    Assignee: GLO AB
    Inventors: Nathan Gardner, Fredrick A. Kish, Jr., Miljenko Modric, Anusha Pokhriyal, Daniel Thompson, Fariba Danesh
  • Publication number: 20190157533
    Abstract: Light emitting devices can be disposed on the front side of a transparent backplane. A laser beam can be irradiated through the transparent backplane and onto a component located on the front side of the transparent backplane. In one embodiment, the component may be a solder material portion that is reflowed to bond the light emitting devices to the transparent backplane. In another embodiment, the component may be a solder material bonded to a defective bonded light emitting device. In this case, the laser irradiation can reflow the solder material to dissociate the defective bonded light emitting device from the transparent backplane. In yet another embodiment, the component may be a device component that is electrically modified by the laser irradiation.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Sharon N. Farrens, Anusha Pokhriyal
  • Patent number: 10205075
    Abstract: A light emitting device and method of forming the same, the light emitting device including: a substrate, a buffer layer disposed on the substrate, a semiconductor mesa disposed on the buffer layer and including a first semiconductor layer, a light emitting active layer disposed on the first semiconductor layer, and a second semiconductor layer disposed on the first semiconductor layer, a contact layer disposed on an upper surface of the mesa, a passivation layer covering sidewalls of the mesa and the contact layer, and a cap structure including a reflective layer covering an upper surface of the contact layer, and a solder layer including a recess in which the reflective layer is disposed.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 12, 2019
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Mariana Munteanu, Fariba Danesh
  • Patent number: 10193038
    Abstract: Light emitting devices can be disposed on the front side of a transparent backplane. A laser beam can be irradiated through the transparent backplane and onto a component located on the front side of the transparent backplane. In one embodiment, the component may be a solder material portion that is reflowed to bond the light emitting devices to the transparent backplane. In another embodiment, the component may be a solder material bonded to a defective bonded light emitting device. In this case, the laser irradiation can reflow the solder material to dissociate the defective bonded light emitting device from the transparent backplane. In yet another embodiment, the component may be a device component that is electrically modified by the laser irradiation.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 29, 2019
    Assignee: GLO AB
    Inventors: Sharon N. Farrens, Anusha Pokhriyal
  • Patent number: 10177123
    Abstract: A backplane optionally having stepped horizontal surfaces and optionally embedding metal interconnect structures is provided. First conductive bonding structures are formed on first stepped horizontal surfaces. First light emitting devices on a first transfer substrate are disposed on the first conductive bonding structures, and a first subset of the first light emitting devices is bonded to the first conductive bonding structures. Laser irradiation can be employed to selectively disconnect the first subset of the first light emitting devices from the first transfer substrate while a second subset of the first light emitting devices remains attached to the first transfer substrate.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 8, 2019
    Assignee: GLO AB
    Inventors: Nathan Gardner, Fredrick A. Kish, Jr., Miljenko Modric, Anusha Pokhriyal, Daniel Bryce Thompson, Fariba Danesh, Sharon N. Farrens
  • Publication number: 20180366450
    Abstract: A backplane optionally having stepped horizontal surfaces and optionally embedding metal interconnect structures is provided. First conductive bonding structures are formed on first stepped horizontal surfaces. First light emitting devices on a first transfer substrate are disposed on the first conductive bonding structures, and a first subset of the first light emitting devices is bonded to the first conductive bonding structures. Laser irradiation can be employed to selectively disconnect the first subset of the first light emitting devices from the first transfer substrate while a second subset of the first light emitting devices remains attached to the first transfer substrate.
    Type: Application
    Filed: December 17, 2015
    Publication date: December 20, 2018
    Inventors: Nathan GARDNER, Fredrick A. KISH JR., Miljenko MODRIC, Anusha POKHRIYAL, Daniel THOMPSON, Fariba DANESH
  • Publication number: 20180159005
    Abstract: A light emitting device and method of forming the same, the light emitting device including: a substrate, a buffer layer disposed on the substrate, a semiconductor mesa disposed on the buffer layer and including a first semiconductor layer, a light emitting active layer disposed on the first semiconductor layer, and a second semiconductor layer disposed on the first semiconductor layer, a contact layer disposed on an upper surface of the mesa, a passivation layer covering sidewalls of the mesa and the contact layer, and a cap structure including a reflective layer covering an upper surface of the contact layer, and a solder layer including a recess in which the reflective layer is disposed.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 7, 2018
    Inventors: Anusha POKHRIYAL, Mariana MUNTEANU, Fariba DANESH
  • Publication number: 20180130779
    Abstract: Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Anusha Pokhriyal, Sharon N. Farrens
  • Patent number: 9893041
    Abstract: Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 13, 2018
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Sharon N. Farrens
  • Publication number: 20170373046
    Abstract: A backplane optionally having stepped horizontal surfaces and optionally embedding metal interconnect structures is provided. First conductive bonding structures are formed on first stepped horizontal surfaces. First light emitting devices on a first transfer substrate are disposed on the first conductive bonding structures, and a first subset of the first light emitting devices is bonded to the first conductive bonding structures. Laser irradiation can be employed to selectively disconnect the first subset of the first light emitting devices from the first transfer substrate while a second subset of the first light emitting devices remains attached to the first transfer substrate.
    Type: Application
    Filed: December 17, 2015
    Publication date: December 28, 2017
    Inventors: Nathan GARDNER, Fredrick A. KISH JR., Miljenko MODRIC, Anusha POKHRIYAL, Daniel Bryce THOMPSON, Fariba DANESH, Sharon N. FARRENS
  • Publication number: 20170301660
    Abstract: Backplane-side bonding structures including a common metal are formed on a backplane. Multiple source coupons are provided such that each source coupon includes a transfer substrate and an array of devices to be transferred. Each array of devices are arranged such that each array includes a unit cell structure including multiple devices of the same type and different types of bonding structures including different metals that provide different eutectic temperatures with the common metal. Different types of devices can be sequentially transferred to the backplane by sequentially applying the supply coupons and selecting devices providing progressively higher eutectic temperatures between respective bonding pads and the backplane-side bonding structures. Previously transferred devices stay on the backplane during subsequent transfer processes, enabling formation of arrays of different devices on the backplane.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 19, 2017
    Inventors: Anusha POKHRIYAL, Sharon N. FARRENS
  • Publication number: 20170288102
    Abstract: Light emitting devices can be disposed on the front side of a transparent backplane. A laser beam can be irradiated through the transparent backplane and onto a component located on the front side of the transparent backplane. In one embodiment, the component may be a solder material portion that is reflowed to bond the light emitting devices to the transparent backplane. In another embodiment, the component may be a solder material bonded to a defective bonded light emitting device. In this case, the laser irradiation can reflow the solder material to dissociate the defective bonded light emitting device from the transparent backplane. In yet another embodiment, the component may be a device component that is electrically modified by the laser irradiation.
    Type: Application
    Filed: March 20, 2017
    Publication date: October 5, 2017
    Inventors: Sharon N. FARRENS, Anusha POKHRIYAL