Patents by Inventor Apoorv Kalyankar

Apoorv Kalyankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891937
    Abstract: A mixing assembly for an exhaust system can include an outer body, a front plate, a back plate, a middle member, and an inner member. The outer body defines an interior volume and has a center axis. The front plate defines an upstream portion of the interior volume and the back plate defines a downstream portion of the interior volume. The middle member is positioned transverse to the center axis and defines a volume. The inner member is positioned coaxially with the middle member inside the middle member. The front plate includes inlets configured to direct exhaust to (i) a first flow path into an interior of the inner member, (ii) a second flow path into the volume of the middle member between a sidewall of the middle member and a sidewall of the inner member, and (iii) a third flow path into the interior volume of the outer body.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: February 6, 2024
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Matthew K. Volmerding, Ryan M. Johnson, Jim L Alonzo, Samuel Johnson, Apoorv Kalyankar, Pranjal Naik, Kartiki Jagtap, Mahendra Mittapalli
  • Patent number: 11761365
    Abstract: Apparatus and method for mixing reductant in an exhaust gas flow using virtual interception. Embodiments include an exhaust gas and reductant mixer comprising a body, a first flow device, and a reductant entry port. The body defines an exhaust gas flow path having a central portion. The first flow device swirls the exhaust gas in a circumferential direction with respect to the gas flow path. The reductant entry port introduces the reductant into the gas flow path at a location downstream from the first flow device and in an introduction direction (1) offset from the central portion, and (2) opposite the circumferential direction.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: September 19, 2023
    Assignee: CUMMINS INC.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Niklas Schmidt, Achuth Mannannur
  • Publication number: 20230143888
    Abstract: An aftertreatment system comprises: a housing, a SCR system disposed in the housing. A mixer is disposed upstream of the SCR system and includes: a hub, a tubular member disposed circumferentially around the hub and defining a reductant entry port, and plurality of vanes extending from the hub to the tubular member such that openings are defined between adjacent vanes. The plurality of vanes swirl the exhaust gas in a circumferential direction. A reductant injector is disposed on the housing upstream of the SCR system along a transverse axis and configured to insert a reductant into the exhaust gas flowing through the housing through the reductant entry port. The reductant is inserted at a non-zero angle with respect to the transverse axis opposite the circumferential direction to achieve virtual interception. A mixer central axis is radially offset with respect to a housing central axis of the housing.
    Type: Application
    Filed: February 11, 2021
    Publication date: May 11, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur
  • Publication number: 20230108543
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality of main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Application
    Filed: November 29, 2022
    Publication date: April 6, 2023
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Publication number: 20230016427
    Abstract: A mixing assembly for an exhaust system can include an outer body, a front plate, a back plate, a middle member, and an inner member. The outer body defines an interior volume and has a center axis. The front plate defines an upstream portion of the interior volume and the back plate defines a downstream portion of the interior volume. The middle member is positioned transverse to the center axis and defines a volume. The inner member is positioned coaxially with the middle member inside the middle member. The front plate includes inlets configured to direct exhaust to (i) a first flow path into an interior of the inner member, (ii) a second flow path into the volume of the middle member between a sidewall of the middle member and a sidewall of the inner member, and (iii) a third flow path into the interior volume of the outer body.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Matthew K. Volmerding, Ryan M. Johnson, Jim L. Alonzo, Samuel Johnson, Apoorv Kalyankar, Pranjal Naik, Kartiki Jagtap, Mahendra Mittapalli
  • Patent number: 11542847
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality of main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 3, 2023
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Patent number: 11486289
    Abstract: A mixing assembly for an exhaust system can include an outer body, a front plate, a back plate, a middle member, and an inner member. The outer body defines an interior volume and has a center axis. The front plate defines an upstream portion of the interior volume and the back plate defines a downstream portion of the interior volume. The middle member is positioned transverse to the center axis and defines a volume. The inner member is positioned coaxially with the middle member inside the middle member. The front plate includes inlets configured to direct exhaust to (i) a first flow path into an interior of the inner member, (ii) a second flow path into the volume of the middle member between a sidewall of the middle member and a sidewall of the inner member, and (iii) a third flow path into the interior volume of the outer body.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 1, 2022
    Assignee: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Matthew K. Volmerding, Ryan M. Johnson, Jim L. Alonzo, Samuel Johnson, Apoorv Kalyankar, Pranjal Naik, Kartiki Jagtap, Mahendra Mittapalli
  • Patent number: 11208927
    Abstract: An aftertreatment component includes an inlet connector tube, an outlet connector tube, a chamber, a flow dissipater, and a substrate. The inlet connector tube receives exhaust gasses. The chamber is between the inlet connector tube and the outlet connector tube. The flow dissipater is positioned around the inlet connector tube and within the chamber. The flow dissipater receives the exhaust gasses from the inlet connector tube and includes a plurality of perforations. The plurality of perforations defines an open area of the flow dissipater. The open area of the flow dissipater is greatest proximate to the inlet connector tube and progressively decreasing proximate to the outlet connector tube. The substrate is positioned within the chamber and receives the exhaust gasses from the flow dissipater and provides the treated exhaust gasses to the outlet connector tube. The exhaust gases are expelled through the flow dissipater via the plurality of perforations.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 28, 2021
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Apoorv Kalyankar, Daniel Maciejewski, John G. Buechler, Ryan M. Johnson, Randolph G. Zoran, Achuth Munnannur
  • Publication number: 20210372313
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality or main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Patent number: 11136910
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality of main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: October 5, 2021
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Publication number: 20210270174
    Abstract: A mixing assembly for an exhaust system can include an outer body, a front plate, a back plate, a middle member, and an inner member. The outer body defines an interior volume and has a center axis. The front plate defines an upstream portion of the interior volume and the back plate defines a downstream portion of the interior volume. The middle member is positioned transverse to the center axis and defines a volume. The inner member is positioned coaxially with the middle member inside the middle member. The front plate includes inlets configured to direct exhaust to (i) a first flow path into an interior of the inner member, (ii) a second flow path into the volume of the middle member between a sidewall of the middle member and a sidewall of the inner member, and (iii) a third flow path into the interior volume of the outer body.
    Type: Application
    Filed: July 3, 2018
    Publication date: September 2, 2021
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Matthew K. Volmerding, Ryan M. Johnson, Jim L. Alonzo, Samuel Johnson, Apoorv Kalyankar, Pranjal Naik, Kartiki Jagtap, Mahendra Mittapalli
  • Publication number: 20210131329
    Abstract: An aftertreatment component includes an inlet connector tube, an outlet connector tube, a chamber, a flow dissipater, and a substrate. The inlet connector tube receives exhaust gasses. The chamber is between the inlet connector tube and the outlet connector tube. The flow dissipater is positioned around the inlet connector tube and within the chamber. The flow dissipater receives the exhaust gasses from the inlet connector tube and includes a plurality of perforations. The plurality of perforations defines an open area of the flow dissipater. The open area of the flow dissipater is greatest proximate to the inlet connector tube and progressively decreasing proximate to the outlet connector tube. The substrate is positioned within the chamber and receives the exhaust gasses from the flow dissipater and provides the treated exhaust gasses to the outlet connector tube. The exhaust gases are expelled through the flow dissipater via the plurality of perforations.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 6, 2021
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Apoorv KALYANKAR, Daniel MACIEJEWSKI, John G. BUECHLER, Ryan M. JOHNSON, Randolph G. ZORAN, Achuth MUNNANNUR
  • Patent number: 10865681
    Abstract: An aftertreatment component's shape, entrance geometry, and/or position within an aftertreatment assembly can be modified for local and/or bulk exhaust flow control. In some implementations, a body of the aftertreatment component has a non-circular cross-section, a non-circular opening, and/or a variable face geometry. The non-circular cross-section and/or opening can be of a variety of different shapes.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: December 15, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: John G. Buechler, Randolph G. Zoran, Ryan M. Johnson, Stephen M. Holl, Taren DeHart, Jim L. Alonzo, Matthew L. Anderson, Apoorv Kalyankar, George Eugene Mavroudis, Gaurav Hemant Pandit
  • Patent number: 10792626
    Abstract: A vane swirl mixer for exhaust aftertreatment includes: a vane swirl mixer inlet; a vane swirl mixer outlet; a first flow device including: a Venturi body; a plurality of upstream vanes positioned within the Venturi body; a plurality of upstream vane apertures interspaced between the plurality of upstream vanes; a plurality of downstream vanes positioned within the Venturi body; and a plurality of downstream vane apertures interspaced between the plurality of downstream vanes. At least one of the upstream vane hub and the downstream vane hub is radially offset from a Venturi center axis, thereby causing individual ones of the plurality of vanes coupled to the radially offset vane hub to differ in their geometry.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 6, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, David Lee Dunnuck
  • Patent number: 10632430
    Abstract: A vane swirl mixer for exhaust aftertreatment includes: a vane swirl mixer inlet; a vane swirl mixer outlet; a first flow device including: a Venturi body; a plurality of upstream vanes positioned within the Venturi body; a plurality of upstream vane apertures interspaced between the plurality of upstream vanes; a plurality of downstream vanes positioned within the Venturi body; and a plurality of downstream vane apertures interspaced between the plurality of downstream vanes. At least one of the upstream vane hub and the downstream vane hub is radially offset from a Venturi center axis, thereby causing individual ones of the plurality of vanes coupled to the radially offset vane hub to differ in their geometry.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 28, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, David Lee Dunnuck
  • Publication number: 20200123955
    Abstract: A multi-stage mixer includes a multi-stage mixer inlet, a multi-stage mixer outlet, a first flow device, and a second flow device. The multi-stage mixer inlet is configured to receive exhaust gas. The multi-stage mixer outlet is configured to provide the exhaust gas to a catalyst. The first flow device is configured to receive the exhaust gas from the multi-stage mixer inlet and to receive reductant such that the reductant is partially mixed with the exhaust gas within the first flow device. The first flow device includes a plurality of main vanes and a plurality of main vane apertures. The plurality of main vane apertures is interspaced between the plurality of main vanes. The plurality of main vane apertures is configured to receive the exhaust gas and to cooperate with the plurality of main vanes to provide the exhaust gas from the first flow device with a swirl flow.
    Type: Application
    Filed: June 5, 2018
    Publication date: April 23, 2020
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Z. Gerald Liu, Apoorv Kalyankar, Achuth Munnannur, Niklas M. Schmidt, Roy W. Detra, Mihai Chiruta
  • Publication number: 20190234270
    Abstract: An aftertreatment component's shape, entrance geometry, and/or position within an aftertreatment assembly can be modified for local and/or bulk exhaust flow control. In some implementations, a body of the aftertreatment component has a non-circular cross-section, a non-circular opening, and/or a variable face geometry. The non-circular cross-section and/or opening can be a variety of different shapes.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 1, 2019
    Applicant: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: John G. Buechler, Randolph G. Zoran, Ryan M. Johnson, Stephen M. Holl, Taren DeHart, Jim L. Alonzo, Matthew L. Anderson, Apoorv Kalyankar, George Eugene Mavroudis, Gaurav Hemant Pandit