Patents by Inventor Apostolos G. Doukas

Apostolos G. Doukas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115292
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 11, 2024
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20240016835
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 18, 2024
    Applicant: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Patent number: 11832845
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 5, 2023
    Assignee: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Patent number: 11730758
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: August 22, 2023
    Assignee: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20220347209
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 3, 2022
    Applicant: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20200384017
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Applicant: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20200360039
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: July 6, 2020
    Publication date: November 19, 2020
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Patent number: 10736654
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: August 11, 2020
    Assignee: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20180353538
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: January 3, 2018
    Publication date: December 13, 2018
    Applicant: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas, Gerard van Hamel Platerink
  • Publication number: 20180140316
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 24, 2018
    Inventors: Richard Rox ANDERSON, William A. FARINELLI, Walfre FRANCO, Joshua TAM, Fernanda H. SAKAMOTO, Apostolos G. DOUKAS, Martin PURSCHKE, Min YAO
  • Patent number: 9895162
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 20, 2018
    Assignee: THE GENERAL HOSPITAL CORPORATION
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20180028659
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: March 15, 2017
    Publication date: February 1, 2018
    Applicant: The General Hospital Corporation
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20160310527
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: November 24, 2015
    Publication date: October 27, 2016
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas, Gerard van Hamel Platerink
  • Publication number: 20150238214
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: May 14, 2015
    Publication date: August 27, 2015
    Applicant: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20150238776
    Abstract: A system and method are provided for preventing damage to the epidermis or other epithelial or non-target tissue during photodynamic therapy treatment. For example, an inhibiting radiation can be used to control formation of a photosensitizer from a precursor photosensitizer in the epidermis or epithelial tissue. Subsequent application of a treatment radiation can activate the photosensitizer to damage or destroy target sites while the non-target tissue remains substantially unaffected.
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Inventors: Fernanda Hidemi Sakamoto, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Patent number: 9108045
    Abstract: A system and method are provided for preventing damage to the epidermis or other epithelial or non-target tissue during photodynamic therapy treatment. For example, an inhibiting radiation can be used to control formation of a photosensitizer from a precursor photosensitizer in the epidermis or epithelial tissue. Subsequent application of a treatment radiation can activate the photosensitizer to damage or destroy target sites while the non-target tissue remains substantially unaffected.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 18, 2015
    Assignee: The General Hospital Corporation
    Inventors: Fernanda Hidemi Sakamoto, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Patent number: 9060803
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 23, 2015
    Assignee: The General Hospital Corporation
    Inventors: Richard A. Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20110313429
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: May 6, 2011
    Publication date: December 22, 2011
    Applicant: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20100174223
    Abstract: A system and method are provided for preventing damage to the epidermis or other epithelial or non-target tissue during photodynamic therapy treatment. For example, an inhibiting radiation can be used to control formation of a photosensitizer from a precursor photosensitizer in the epidermis or epithelial tissue. Subsequent application of a treatment radiation can activate the photosensitizer to damage or destroy target sites while the non-target tissue remains substantially unaffected.
    Type: Application
    Filed: December 24, 2009
    Publication date: July 8, 2010
    Applicant: The General Hospital Corporation d/b/a Massachusetts General Hospital
    Inventors: Fernanda Hidemi Sakamoto, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20090259167
    Abstract: The invention provides methods and compositions for treating a tissue disorder in a subject by parenterally administering a solution of aminolevulinic acid (ALA) or a derivative thereof that is not greater than 1.0 percent by weight into a local subcutaneous or dermal region of the subject; and administering high fluence light to said bodily area to produce a phototoxic species in said local region, thereby treating a tissue disorder in the subject.
    Type: Application
    Filed: March 23, 2009
    Publication date: October 15, 2009
    Applicant: THE GENERAL HOSPITAL CORPORATION
    Inventors: Fernanda H. Sakamoto, R. R. Anderson, Zeina Tannous, William A. Farinelli, Apostolos G. Doukas