Patents by Inventor Apparao Rao

Apparao Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060255790
    Abstract: A method and system is disclosed that can be used to directly detect and analyze an electric signal electrostatically induced a semi-conductive or conductive element at resonance. Through detection of the changes in the characteristics of the signal from the element, the disclosed devices can detect, for instance, presence of chemical/biological species in a sample or measure physical parameters of a sample such as pressure/acceleration, magnetic force, temperature, and/or extremely small masses. The disclosed systems include one or more micro- or nano-sized elements. Through modulation of an electric charge on a counter-electrode that is located at a pre-determined distance from the element, a modulating charge can be induced upon the element. Resonance can be directly detected via electronic monitoring of the induced signal for the higher harmonics of the natural resonant frequency.
    Type: Application
    Filed: February 14, 2006
    Publication date: November 16, 2006
    Inventors: Jay Gaillard, Razvan Ciocan, Malcolm Skove, Apparao Rao
  • Publication number: 20050238566
    Abstract: The present invention discloses a relatively simple CVD method for forming branched carbon nanotubes. In general, the method includes adding a dopant to the precursor materials. The dopant can be a material that has a thermodynamically more favorable carbide-forming reaction at the reactor conditions than does the catalyst that is provided to the reactor by a second precursor material. The doped nanoparticles formed in the reactor can adhere to the walls of the developing nanotubes and provide a nucleation site for the development of one or more branches on the nanotube. The nanotubes formed according to the invention can be recognized as such due to the presence of the doped nanoparticles adhered along the walls of the branched nanotubes.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 27, 2005
    Inventors: Apparao Rao, Nicholas Gothard, Jay Gaillard
  • Publication number: 20050183492
    Abstract: Disclosed are resonant gas sensors and methods for forming and using the disclosed sensors. The sensors include a resonator including a layer comprising adsorptive nanostructures, for example carbon nanotubes, activated carbon fibers, or adsorptive nanowires. The dielectric of the resonator is in electrical communication with the layer comprising adsorptive nanostructures such that the effective resonant frequency of the resonator depends on both the dielectric constant of the dielectric as well as the dielectric constant of the adsorptive layer. In some embodiments, the nanostructures can be degassed. The sensors can detect the presence of polar gases, non-polar gases, organic vapors, and mixtures of materials with both high sensitivity and high selectivity.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 25, 2005
    Inventors: Apparao Rao, Saurabh Chopra
  • Publication number: 20050042465
    Abstract: The present invention is generally directed to a novel process for the production of nanowires and nanobelts and the novel nanostructures which can be produced according to the disclosed processes. The process can be carried out at ambient pressure and includes locating a metal in a reaction chamber, heating the chamber to a temperature at which the metal becomes molten, and flowing a vapor-phase reactant through the chamber. The vapor-phase reactant and the molten metal can react through a thermal CVD process, and nanostructures can form on the surface of the molten metal. Dimensions of the nanostructures can be controlled by reaction temperature.
    Type: Application
    Filed: August 22, 2003
    Publication date: February 24, 2005
    Inventors: Apparao Rao, Rahul Rao