Patents by Inventor Appo Van Der Wiel

Appo Van Der Wiel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065112
    Abstract: A wafer-level packaged magnetic sensor device includes: a first semiconductor substrate having a processing circuit configured for receiving a plurality of sensor signals, and for determining at least one difference signal, and for providing an output signal derived from said difference signal. A plurality of sensor substrates include a second semiconductor substrate with a first magnetic sensor, and a third semiconductor substrate with a second magnetic sensor the first semiconductor substrate being arranged at a location between the plurality of sensor substrates. The substrates are electrically connected by means of at least one redistribution layer.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 22, 2024
    Inventor: Appo VAN DER WIEL
  • Publication number: 20240060838
    Abstract: A magnetoelastic torque sensor system includes a shaft having at least one axial section magnetized in a circumferential direction; and a magnetic sensor device arranged in the vicinity of the shaft. The sensor device has a first semiconductor substrate having a processing circuit, a second semiconductor substrate having a first magnetic sensor, and a third semiconductor substrate having a second magnetic sensor. Each magnetic sensor is configured for measuring a magnetic field component. The first, second and third semiconductor substrates are incorporated in a single packaged device. The processing circuit is configured for determining a pairwise difference between the magnetic field components, and for outputting a signal or a value indicative of a torque exerted upon the shaft, based on said pairwise difference. A method of measuring a torque exerted upon a shaft is provided.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 22, 2024
    Inventors: Appo VAN DER WIEL, Lucian BARBUT, Bruno BRAJON, Gael CLOSE, Enrico GASPARIN
  • Publication number: 20230422632
    Abstract: A method of producing a semiconductor substrate comprising at least one integrated magnetic flux concentrator, comprising the steps of: a) providing a semiconductor substrate having an upper surface; b) making at least one cavity in said upper surface; c) depositing one or more layers of one or more materials, including sputtering at least one layer of a soft magnetic material; d) removing substantially all of the soft magnetic material that is situated outside of the at least one cavity, while leaving at least a portion of the soft magnetic material that is inside said at least one cavity. A semiconductor substrate comprising at least one integrated magnetic flux concentrator. A sensor device or a sensor system, a current sensor device or system, a position sensor device or system, a proximity sensor device or system, an integrated transformer device or system.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: Appo VAN DER WIEL, Yves BIDAUX, Lionel TOMBEZ
  • Publication number: 20230386752
    Abstract: A unit trench capacitor in a substrate includes one or more trenches in the substrate, a dielectric layer, a first electrode and a second electrode. Walls of the one or more trenches are covered by the dielectric layer which separates the first electrode from the second electrode. Each trench follows a closed curve. The closed curve of each trench has one or more elongated parts in directions in which the substrate has a maximum elastic modulus, or the closed curve of each trench has a circular shape if the substrate has an isotropic elastic modulus.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 30, 2023
    Inventors: Appo VAN DER WIEL, Piet DE PAUW, Ralf LERNER
  • Publication number: 20230386753
    Abstract: A trench capacitor includes a plurality of unit trench capacitors arranged in a 2D repetitive pattern in a substrate. The unit trench capacitors are separated by elongated trenches or elongated walls between the unit trench capacitors. The trench capacitor includes a plurality of stress compensation elements. Each unit trench capacitor has one or more closed trenches, with each trench further having a bottom electrode, a top electrode, and a dielectric between the bottom electrode and the top electrode. The unit trench capacitors are connected in parallel and the stress compensation elements are arranged between the unit trench capacitors such that they interrupt the elongated walls or trenches.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 30, 2023
    Inventors: Appo VAN DER WIEL, Thomas FREITAG
  • Patent number: 11785865
    Abstract: A method of producing a semiconductor substrate comprising at least one integrated magnetic flux concentrator, comprising the steps of: a) providing a semiconductor substrate having an upper surface; b) making at least one cavity in said upper surface; c) depositing one or more layers of one or more materials, including sputtering at least one layer of a soft magnetic material; d) removing substantially all of the soft magnetic material that is situated outside of the at least one cavity, while leaving at least a portion of the soft magnetic material that is inside said at least one cavity. A semiconductor substrate comprising at least one integrated magnetic flux concentrator. A sensor device or a sensor system, a current sensor device or system, a position sensor device or system, a proximity sensor device or system, an integrated transformer device or system.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: October 10, 2023
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Appo Van Der Wiel, Yves Bidaux, Lionel Tombez
  • Publication number: 20220165935
    Abstract: A method of producing a semiconductor substrate comprising at least one integrated magnetic flux concentrator, comprising the steps of: a) providing a semiconductor substrate having an upper surface; b) making at least one cavity in said upper surface; c) depositing one or more layers of one or more materials, including sputtering at least one layer of a soft magnetic material; d) removing substantially all of the soft magnetic material that is situated outside of the at least one cavity, while leaving at least a portion of the soft magnetic material that is inside said at least one cavity. A semiconductor substrate comprising at least one integrated magnetic flux concentrator. A sensor device or a sensor system, a current sensor device or system, a position sensor device or system, a proximity sensor device or system, an integrated transformer device or system.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 26, 2022
    Inventors: Appo VAN DER WIEL, Yves BIDAUX, Lionel TOMBEZ
  • Publication number: 20210376166
    Abstract: A semiconductor device includes a first diffusion region of a first type with embedded therein, a second and a third diffusion region of a second type different from the first type. The second and third diffusion regions are more doped than the first region. The second and third diffusion regions are each connected to a respective contact. A dielectric layer covers at least an edge of the second and third diffusion regions, and the region in between the second and third diffusion regions. A piezoelectric layer is disposed on, over, adjacent to or in contact with the dielectric layer. A first structure is in a first soft ferromagnetic material and is arranged to perform mechanical stress on the piezoelectric layer in response to a magnetic field.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 2, 2021
    Inventors: Appo VAN DER WIEL, Jeroen DIDDEN
  • Publication number: 20080100311
    Abstract: A method for the electrical measurement of the thickness of a semiconductor layer ( 10, 11, 12) is disclosed. Active layers on SOI wafers, EPI layers with inverse conductivity tape and membrane thickness can be measured by use of a test structure which can routinely be measured during a production process. The embodiment of the test structure (A1 to F1) is preferably annular, such that a high degree of symmetry is achieved on propagation of the measuring current and such that no interactions occur with surrounding structures. The diameter of the arrangement can be matched to the corresponding thickness range of the semiconductor layer to be measured using conventional U-I parameter test systems, conventionally applied in semiconductor production. The determination of the layer thickness is achieved by means of two sequential quadrupole measurements at six contact points.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 1, 2008
    Applicant: X-FAB Semiconductor Foundries AG
    Inventors: Karlheinz Freywald, Giesbert Hoelzer, Siegfried Hering, Uta Kuniss, Appo Van Der Wiel