Patents by Inventor Apurv Kamath

Apurv Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9585607
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: March 7, 2017
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Patent number: 9420968
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: August 23, 2016
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Patent number: 9247901
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: February 2, 2016
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Publication number: 20150039043
    Abstract: Cardiac systems and methods using ECG and blood information for arrhythmia detection and discrimination. Detection circuitry is configured to produce an ECG. An implantable blood sensor configured to produce a blood sensor signal is coupled to a processor. The processor is coupled to the detection and energy delivery circuitry, and used to evaluate and treat cardiac rhythms using both the cardiac electrophysiologic and blood sensor signals. The blood sensor is configured for subcutaneous non-intrathoracic placement and provided in or on the housing, on a lead coupled to the housing, and/or separate to the housing and coupled to the processor via hardwire or wireless link. The blood sensor may be configured for optical sensing, using a blood oxygen saturation sensor or pulse oximeter. A cardiac rhythm may be evaluated using the electrocardiogram signal and the blood sensor signal, and tachyarrhythmias may be treated after confirmation using the blood sense signal.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 5, 2015
    Inventors: Apurv Kamath, Paul A. Haefner, Darrell O. Wagner, Marina V. Brockway
  • Patent number: 8843196
    Abstract: Cardiac systems and methods using ECG and blood information for arrhythmia detection and discrimination. Detection circuitry is configured to produce an ECG. An implantable blood sensor configured to produce a blood sensor signal is coupled to a processor. The processor is coupled to the detection and energy delivery circuitry, and used to evaluate and treat cardiac rhythms using both the cardiac electrophysiologic and blood sensor signals. The blood sensor is configured for subcutaneous non-intrathoracic placement and provided in or on the housing, on a lead coupled to the housing, and/or separate to the housing and coupled to the processor via hardwire or wireless link. The blood sensor may be configured for optical sensing, using a blood oxygen saturation sensor or pulse oximeter. A cardiac rhythm may be evaluated using the electrocardiogram signal and the blood sensor signal, and tachyarrhythmias may be treated after confirmation using the blood sense signal.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 23, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Apurv Kamath, Paul Haefner, Darrell O. Wagner, Marina Brockway
  • Patent number: 8672845
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: March 18, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li, John Michael Dobbles, Aarthi Mahalingam
  • Patent number: 8657747
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 25, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li, John Michael Dobbles, Aarthi Mahalingam
  • Publication number: 20120323100
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Application
    Filed: April 4, 2012
    Publication date: December 20, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Publication number: 20120245855
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Application
    Filed: April 4, 2012
    Publication date: September 27, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Publication number: 20120215496
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 23, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Publication number: 20120215086
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 23, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Publication number: 20120203467
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as interfering species, ischemia, pH changes, temperatures changes, known or unknown sources of mechanical, electrical and/or biochemical noise, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system processes some or the entire data stream continually or intermittently based at least in part on whether the signal artifact event has occurred.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 9, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James H. Brauker, Aarthi Mahalingam, Ying Li
  • Patent number: 8233959
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: July 31, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li
  • Publication number: 20120071942
    Abstract: Cardiac systems and methods using ECG and blood information for arrhythmia detection and discrimination. Detection circuitry is configured to produce an ECG. An implantable blood sensor configured to produce a blood sensor signal is coupled to a processor. The processor is coupled to the detection and energy delivery circuitry, and used to evaluate and treat cardiac rhythms using both the cardiac electrophysiologic and blood sensor signals. The blood sensor is configured for subcutaneous non-intrathoracic placement and provided in or on the housing, on a lead coupled to the housing, and/or separate to the housing and coupled to the processor via hardwire or wireless link. The blood sensor may be configured for optical sensing, using a blood oxygen saturation sensor or pulse oximeter. A cardiac rhythm may be evaluated using the electrocardiogram signal and the blood sensor signal, and tachyarrhythmias may be treated after confirmation using the blood sense signal.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 22, 2012
    Inventors: Apurv Kamath, Paul Haefner, Darrell Orvin Wagner, Marina Brockway
  • Patent number: 8024039
    Abstract: Cardiac systems and methods using ECG and blood information for arrhythmia detection and discrimination. Detection circuitry is configured to produce an ECG. An implantable blood sensor configured to produce a blood sensor signal is coupled to a processor. The processor is coupled to the detection and energy delivery circuitry, and used to evaluate and treat cardiac rhythms using both the cardiac electrophysiologic and blood sensor signals. The blood sensor is configured for subcutaneous non-intrathoracic placement and provided in or on the housing, on a lead coupled to the housing, and/or separate to the housing and coupled to the processor via hardwire or wireless link. The blood sensor may be configured for optical sensing, using a blood oxygen saturation sensor or pulse oximeter. A cardiac rhythm may be evaluated using the electrocardiogram signal and the blood sensor signal, and tachyarrhythmias may be treated after confirmation using the blood sense signal.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Apurv Kamath, Paul Haefner, Darrell Orvin Wagner, Marina Brockway
  • Publication number: 20110218414
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Application
    Filed: April 5, 2011
    Publication date: September 8, 2011
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li
  • Patent number: 7996071
    Abstract: Cardiac methods and devices that separate signals using at least two composite signals acquired at least at two input impedances. A target source impedance may be selected, and a cardiac signal may be separated from composite signals using the selected target source impedance. Medical systems include a cardiac device having a housing that provides amplification circuitry configured to have a first amplifier input impedance and a second amplifier input impedance, such as using two separate circuits or switching between two input impedances. One or more electrode assemblies are coupled to the amplification circuitry. A signal processor is provided in the housing configured to separate a source signal using a first composite signal detected at the first input impedance and a second composite signal detected at the second input impedance. The phase response of the first input amplifier circuit is about equal to that of the second input amplifier circuit.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 9, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Apurv Kamath, Darrel Orvin Wagner, Paul Haefner, Marina Brockway
  • Publication number: 20100179408
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 15, 2010
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li
  • Publication number: 20090270750
    Abstract: Cardiac methods and devices that separate signals using at least two composite signals acquired at least at two input impedances. A target source impedance may be selected, and a cardiac signal may be separated from composite signals using the selected target source impedance. Medical systems include a cardiac device having a housing that provides amplification circuitry configured to have a first amplifier input impedance and a second amplifier input impedance, such as using two separate circuits or switching between two input impedances. One or more electrode assemblies are coupled to the amplification circuitry. A signal processor is provided in the housing configured to separate a source signal using a first composite signal detected at the first input impedance and a second composite signal detected at the second input impedance. The phase response of the first input amplifier circuit is about equal to that of the second input amplifier circuit.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventors: Apurv Kamath, Darrel Orvin Wagner, Paul Haefner, Marina Brockway
  • Patent number: 7570997
    Abstract: Systems and methods provide for sensing of cardiac activity from a subcutaneous, non-intrathoracic location, and detecting a cardiac condition necessitating treatment in response to the sensed cardiac activity. One of a number of cardiac therapies may be selectively delivered to treat the detected cardiac condition, such cardiac therapies including at least a tachycardia therapy, a bradycardia therapy, and an asystole prevention therapy.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: August 4, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric G. Lovett, Adam W. Cates, Darrell Orvin Wagner, Mike Favet, Apurv Kamath