Patents by Inventor Apurv Ullas Kamath

Apurv Ullas Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10918317
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 16, 2021
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20210038136
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 11, 2021
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20210030956
    Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Patent number: 10898114
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James H. Brauker, Paul V. Goode, Jr., Aarthi Mahalingam, Jack Pryor
  • Patent number: 10898113
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Jr., Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 10881339
    Abstract: Devices, systems, and methods for providing more accurate and reliable sensor data and for detecting sensor failures. Two or more electrodes can be used to generate data, and the data can be subsequently compared by a processing module. Alternatively, one sensor can be used, and the data processed by two parallel algorithms to provide redundancy. Sensor performance, including sensor failures, can be identified. The user or system can then respond appropriately to the information related to sensor performance or failure.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 5, 2021
    Assignee: DexCom, Inc.
    Inventors: Thomas A. Peyser, Naresh C. Bhavaraju, Leif N. Bowman, Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Peter C. Simpson
  • Publication number: 20200405202
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: July 15, 2020
    Publication date: December 31, 2020
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv Ullas Kamath, James Patrick Thrower
  • Patent number: 10867420
    Abstract: Systems and methods are described that provide a dynamic reporting functionality that can identify important information and dynamically present a report about the important information that highlights important findings to the user. The described systems and methods are generally described in the field of diabetes management, but are applicable to other medical reports as well. In one implementation, the dynamic reports are based on available data and devices. For example, useless sections of the report, such as those with no populated data, may be removed, minimized in importance, assigned a lower priority, or the like.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 15, 2020
    Assignee: DexCom, Inc.
    Inventors: Georgios Zamanakos, Daniel Justin Wiedeback, Jeffrey Grant Stewart, Eli Reihman, David Price, Lauren C. Miller, Keri Leone, Dan Kraemer, Katherine Eng Kirby, Greg Kida, Apurv Ullas Kamath, Adam R. Greene, Rebecca Gimenez, Sarah Paige Elli, Rian Draeger, Shane Philip Delmore, Leif N. Bowman
  • Patent number: 10856787
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 8, 2020
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200367794
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 26, 2020
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, Jr., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Publication number: 20200359946
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200359945
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200359947
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Patent number: 10835672
    Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Publication number: 20200358855
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate displayable sensor information to a plurality of different types of display devices.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Michael Robert Mensinger, John Michael Dobbles, Apurv Ullas Kamath, Beat Stadelmann, Deborah M. Ruppert, Nasser Salamati, Richard C. Yang
  • Patent number: 10827956
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Peter C. Simpson, Matthew D. Wightlin, Steve Masterson, James R. Petisce, John Nolting, Jack Pryor, Sean Saint, Vance Swanson, James H. Brauker, Apurv Ullas Kamath, Paul V. Goode, Jr., Aarthi Mahalingam
  • Patent number: 10827980
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Apurv Ullas Kamath, J. Michael Dobbles, Aarthi Mahalingam
  • Publication number: 20200337616
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Publication number: 20200337617
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Publication number: 20200337607
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor