Patents by Inventor Arash Jamshidi

Arash Jamshidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200239964
    Abstract: A system and method for determining a presence of cancer in a test sample from a test subject comprising a set of fragments of deoxyribonucleic acid (DNA). The fragments may be identified through probabilistic analyses or identified when determined to be hypermethylated or hypomethylated. The system generates a test feature vector with a score for each CpG site for use in a trained model. The score is based on a number of the fragments in the test sample that overlap the CpG site. The system inputs the test feature vector into the trained model. The trained model has a function that generates a cancer prediction based on the test feature vector and a set of classification parameters. The cancer prediction for the test sample may include a cancer prediction value for each cancer type that describes a likelihood the test sample is of that particular cancer type.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 30, 2020
    Inventors: Samuel S. Gross, Oliver Claude Venn, Alexander P. Fields, Gordon Cann, Arash Jamshidi
  • Publication number: 20200199671
    Abstract: Methods for measuring subpopulations of ribonucleic acid (RNA) molecules are provided. In some embodiments, methods of generating a sequencing library from a plurality of RNA molecules in a test sample obtained from a subject are provided, as well as methods for analyzing the sequencing library to detect, e.g., the presence or absence of a disease.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Wenying Pan, Matthew Larson, H. John Kim, Arash Jamshidi
  • Publication number: 20200105375
    Abstract: Systems and methods for processing sequencing data of ribonucleic acid (RNA) molecules from a test sample include obtaining a plurality of sequence reads each derived from a RNA molecule obtained from the test sample, filtering the plurality of sequence reads, identifying one or more candidate variants from the filtered plurality of sequence reads, determining a quality score for each of the identified one or more candidate variants, the quality score indicating a likelihood that the candidate variant is a false positive detection of a mutation in the RNA molecule, and outputting the one or more candidate variants having a quality score greater than a threshold quality score.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Inventors: WENYING PAN, HYUNSUNG JOHN KIM, MATTHEW H. LARSON, ALEXANDER W. BLOCKER, EARL HUBBELL, ARASH JAMSHIDI
  • Publication number: 20200086322
    Abstract: Described are microfluidic devices and methods for providing a predetermined number of microspheres or beads, together with a cell, within a fluid droplet being processed. The system may provide each droplet with a single bead and a single cell, and the bead may contain DNA or other reagents for later identifying the specific cell associated with that bead.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Hamed Amini, Arash Jamshidi, Tarun Kumar Khurana, Foad Mashayekhi, Yir-Shyuan Wu
  • Publication number: 20190161752
    Abstract: Provided herein are methods of enriching mutated cell free nucleic acids for detection and diagnosis of cancer. Also provided are methods using a CRISPR-Cas system to target and deplete unwanted more abundant cell free nucleic acid sequences thereby enriching for less abundant sequences.
    Type: Application
    Filed: June 13, 2017
    Publication date: May 30, 2019
    Inventors: Gordon Cann, Alex Aravanis, Arash Jamshidi, Rick Klausner, Richard Rava
  • Publication number: 20190062831
    Abstract: In various aspects, the present disclosure provides methods, compositions, reactions mixtures, kits, and systems for sequencing both RNA and DNA from a single source sample. In some embodiments, RNA is treated so as to differentiate RNA sequences from DNA sequences derived from the same sample. In some embodiments, the RNA and DNA are cell-free polynucleotides.
    Type: Application
    Filed: October 31, 2018
    Publication date: February 28, 2019
    Inventors: Matthew Larson, H. John Kim, Nick Eattock, Arash Jamshidi
  • Patent number: 10167505
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: January 1, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi, George Sakaldasis, Eric Vermaas, Sebastian Bohm, Tarun Khurana, Helmy A. Eltoukhy, Jian Gong
  • Patent number: 10144962
    Abstract: In various aspects, the present disclosure provides methods, compositions, reactions mixtures, kits, and systems for sequencing both RNA and DNA from a single source sample. In some embodiments, RNA is treated so as to differentiate RNA sequences from DNA sequences derived from the same sample. In some embodiments, the RNA and DNA are cell-free polynucleotides.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: December 4, 2018
    Assignee: GRAIL, Inc.
    Inventors: Matthew Larson, H. John Kim, Nick Eattock, Arash Jamshidi
  • Publication number: 20180291438
    Abstract: Aspects of the invention include methods for preparing sequencing libraries, performing sequencing procedures that can correct for process-related errors, and identifying rare variants that are or may be indicative of cancer.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 11, 2018
    Inventors: Arash Jamshidi, Gordon Cann, Hamed Amini, Alex Aravanis
  • Publication number: 20180250672
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 6, 2018
    Applicant: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20180119216
    Abstract: Aspects of the invention relate to methods and compositions for preparing and analyzing a single-stranded sequencing library from a double-stranded DNA (e.g., double-stranded cfDNA) sample. In some embodiments, the sample includes double-stranded DNA (dsDNA) molecules, and damaged dsDNA (e.g., nicked dsDNA) molecules. In some embodiments, the sample includes single-stranded DNA (ssDNA) molecules. The subject methods facilitate the collection of information, including strand-pairing and connectivity information, from dsDNA, ssDNA and damaged DNA (e.g., nicked DNA) molecules in a sample, thereby providing enhanced diagnostic information as compared to sequencing libraries that are prepared using conventional methods.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 3, 2018
    Inventors: Arash Jamshidi, Hamed Amini
  • Publication number: 20180044731
    Abstract: Described herein are methods of preparing dual-indexed nucleic acid libraries for methylation profiling using bisulfite conversion sequencing. In various embodiments, the methods use a two-step indexing process to tag bisulfite-treated DNA with unique molecular identifiers (UMIs).
    Type: Application
    Filed: August 10, 2017
    Publication date: February 15, 2018
    Inventors: Anton VALOUEV, Arash JAMSHIDI
  • Publication number: 20180002749
    Abstract: In various aspects, the present disclosure provides methods, compositions, reactions mixtures, kits, and systems for sequencing both RNA and DNA from a single source sample. In some embodiments, RNA is treated so as to differentiate RNA sequences from DNA sequences derived from the same sample. In some embodiments, the RNA and DNA are cell-free polynucleotides.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: Matthew Larson, H. John Kim, Nick Eattock, Arash Jamshidi
  • Publication number: 20170128940
    Abstract: Described are microfluidic devices and methods for providing a predetermined number of microspheres or beads, together with a cell, within a fluid droplet being processed. The system may provide each droplet with a single bead and a single cell, and the bead may contain DNA or other reagents for later identifying the specific cell associated with that bead.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 11, 2017
    Inventors: Hamed Amini, Arash Jamshidi, Tarun Kumar Khurana, Foad Mashayekhi, Yir-Shyuan Wu
  • Publication number: 20170044525
    Abstract: Presented herein are methods and compositions for multiplexed single cell gene expression analysis. Some methods and compositions include the use of droplets and/or beads bearing unique barcodes such as unique molecular barcodes (UMI).
    Type: Application
    Filed: April 28, 2015
    Publication date: February 16, 2017
    Inventors: Fiona KAPER, Jian-Bing FAN, Neeraj SALATHIA, Gordon M. CANN, Arash JAMSHIDI, Alex ARAVANIS
  • Publication number: 20160237489
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Application
    Filed: March 10, 2016
    Publication date: August 18, 2016
    Applicant: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi, George Sakaldasis, Eric Vermaas, Sebastian Bohm, Tarun Khurana, Helmy A. Eltoukhy, Jian Gong
  • Publication number: 20160199832
    Abstract: Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Applicant: Advanced Liquid Logic France SAS
    Inventors: Arash Jamshidi, Yan-You Lin, Alex Aravanis, Cyril Delattre, Arnaud Rival, Jennifer Foley, Poorya Sabounchi, Tarun Khurana, Majid Babazadeh, Hamed Amini, Bala Murali Venkatesan, M. Shane Bowen, Steven M. Barnard, Maria Candelaria Rogert Bacigalupo, Dietrich Dehlinger
  • Patent number: 9309571
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 12, 2016
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi, George Sakaldasis, Eric Vermaas, Sebastian Bohm, Tarun Khurana, Helmy A. Eltoukhy, Jian Gong
  • Publication number: 20140073514
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 13, 2014
    Applicant: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi, George Sakaldasis, Eric Vermaas, Sebastian Bohm, Tarun Khurana, Helmy A. Eltoukhy, Jian Gong
  • Patent number: 8637242
    Abstract: Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Robert C. Kain, Kenneth M. Kuhn, AmirAli Hajhossein Talasaz, Arash Jamshidi