Patents by Inventor ARAVIND SAMBA MURTHY

ARAVIND SAMBA MURTHY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230081528
    Abstract: A regenerative braking controller for an AC motor. To determine an electromagnetic torque for slowing or stopping the motor, the regenerative braking controller accesses a lookup table to retrieve a braking torque value corresponding to a current estimate of rotor velocity. The retrieved braking torque may correspond to a maximum or minimum torque level at which regenerative braking will occur at the current rotor velocity, or to a torque level at which charging current during regenerative braking will be maximized. If an external mechanical brake is present, the regenerative braking controller can forward an external braking torque signal to a controller so that the mechanical brake can apply the remainder of the braking force beyond that indicated by the regenerative braking torque. A method for establishing the braking torques to be stored in the lookup table is also disclosed.
    Type: Application
    Filed: October 25, 2022
    Publication date: March 16, 2023
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Patent number: 11479124
    Abstract: A regenerative braking controller for an AC motor. To determine an electromagnetic torque for slowing or stopping the motor, the regenerative braking controller accesses a lookup table to retrieve a braking torque value corresponding to a current estimate of rotor velocity. The retrieved braking torque may correspond to a maximum or minimum torque level at which regenerative braking will occur at the current rotor velocity, or to a torque level at which charging current during regenerative braking will be maximized. If an external mechanical brake is present, the regenerative braking controller can forward an external braking torque signal to a controller so that the mechanical brake can apply the remainder of the braking force beyond that indicated by the regenerative braking torque. A method for establishing the braking torques to be stored in the lookup table is also disclosed.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: October 25, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Patent number: 11198585
    Abstract: A hydraulic elevator may comprise a bidirectional pump that controls up and down motion of an elevator car. A VVVF drive may cause the bidirectional pump to provide working fluid in a controlled manner to a hydraulic jack that supports the elevator car. A control valve may be disposed between the bidirectional pump and the hydraulic jack so that the control valve can be closed when the elevator car needs to be held in place. To avoid pressure waves that propagate when the control valve is opened with disparate pressures on the pump and jack sides of the control valve, the bidirectional pump may adjust the pressure on the pump side of the closed control valve to the pressure on the jack side of the control valve before the control valve is opened.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: December 14, 2021
    Assignee: TK Elevator Corporation
    Inventor: Aravind Samba Murthy
  • Publication number: 20210309112
    Abstract: A regenerative braking controller for an AC motor. To determine an electromagnetic torque for slowing or stopping the motor, the regenerative braking controller accesses a lookup table to retrieve a braking torque value corresponding to a current estimate of rotor velocity. The retrieved braking torque may correspond to a maximum or minimum torque level at which regenerative braking will occur at the current rotor velocity, or to a torque level at which charging current during regenerative braking will be maximized. If an external mechanical brake is present, the regenerative braking controller can forward an external braking torque signal to a controller so that the mechanical brake can apply the remainder of the braking force beyond that indicated by the regenerative braking torque. A method for establishing the braking torques to be stored in the lookup table is also disclosed.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Patent number: 11040625
    Abstract: A regenerative braking controller for an AC motor. To determine an electromagnetic torque for slowing or stopping the motor, the regenerative braking controller accesses a lookup table to retrieve an braking torque value corresponding to a current estimate of rotor velocity. The retrieved braking torque may correspond to a maximum or minimum torque level at which regenerative braking will occur at the current rotor velocity, or to a torque level at which charging current during regenerative braking will be maximized. If an external mechanical brake is present, the regenerative braking controller can forward an external braking torque signal to a controller so that the mechanical brake can apply the remainder of the braking force beyond that indicated by the regenerative braking torque. A method for establishing the braking torques to be stored in the lookup table is also disclosed.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 22, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20200276902
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20200262677
    Abstract: A hydraulic elevator may comprise a bidirectional pump that controls up and down motion of an elevator car. A VVVF drive may cause the bidirectional pump to provide working fluid in a controlled manner to a hydraulic jack that supports the elevator car. A control valve may be disposed between the bidirectional pump and the hydraulic jack so that the control valve can be closed when the elevator car needs to be held in place. To avoid pressure waves that propagate when the control valve is opened with disparate pressures on the pump and jack sides of the control valve, the bidirectional pump may adjust the pressure on the pump side of the closed control valve to the pressure on the jack side of the control valve before the control valve is opened.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 20, 2020
    Applicants: ThyssenKrupp Elevator Corporation, thyssenkrupp AG
    Inventor: Aravind Samba Murthy
  • Patent number: 10696163
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 30, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20190217708
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Application
    Filed: March 27, 2019
    Publication date: July 18, 2019
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Patent number: 10286785
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 14, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20170341518
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Patent number: 9783063
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: October 10, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20170129340
    Abstract: A regenerative braking controller for an AC motor. To determine an electromagnetic torque for slowing or stopping the motor, the regenerative braking controller accesses a lookup table to retrieve an braking torque value corresponding to a current estimate of rotor velocity. The retrieved braking torque may correspond to a maximum or minimum torque level at which regenerative braking will occur at the current rotor velocity, or to a torque level at which charging current during regenerative braking will be maximized. If an external mechanical brake is present, the regenerative braking controller can forward an external braking torque signal to a controller so that the mechanical brake can apply the remainder of the braking force beyond that indicated by the regenerative braking torque. A method for establishing the braking torques to be stored in the lookup table is also disclosed.
    Type: Application
    Filed: November 11, 2015
    Publication date: May 11, 2017
    Inventors: Aravind Samba Murthy, David Patrick Magee
  • Publication number: 20170057360
    Abstract: A method of regenerative braking includes providing an electric motor including at least one stator and a rotor, a speed of the rotor, a motor controller that regulates a current level in the stator winding, a power inverter which controls an energy flow to the stator terminal, and an energy storage system (ESS) which exchanges energy with the motor. A battery management circuit is between the power inverter and the ESS, and a processor has an associated memory storing a regenerative braking (RB) algorithm. The RB algorithm during braking causes the motor controller to execute determining an RB torque value from the rotor speed that maximizes regenerative braking current, and the power inverter is used to redirect the RB current to maximize a power transfer from the motor to the ESS.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 2, 2017
    Inventors: ARAVIND SAMBA MURTHY, DAVID PATRICK MAGEE