Patents by Inventor Ari Partanen

Ari Partanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210391592
    Abstract: According to an example aspect of the present invention, there is provided a rechargeable electromagnetic induction battery comprising: a first electrode, which comprises heat sink and an anode; a second electrode, which comprises heat sink and a cathode; an inductor coil; and an electrolytic solution contained between the first and second electrodes. Also, there is provided a method of charging an electromagnetic induction battery, comprising the steps of: attaching a voltage source to the battery, applying a direct current voltage to the battery for a first period of time, and applying an alternating current voltage to the battery for a second period of time, wherein the battery has an anode, cathode, inductor and an electrolytic solution comprising electrons, wherein the alternating current generates a magnetic field which excites the electrons in the electrolytic solution to an upper energy state.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Inventors: Ari Partanen, Anssi Partanen
  • Publication number: 20200222728
    Abstract: An example method includes generating an acoustic ultrasound wave that is focused at a focal point. The method further includes sequentially directing the focal point upon distinct portions of an object to form respective shock waves at the distinct portions of the object. The method further includes, via the respective shock waves, causing the distinct portions of the object to boil and form respective vapor cavities. The method further includes causing substantially uniform ablation of a region of the object that comprises the distinct portions. The substantially uniform ablation is caused via interaction of the respective shock waves with the respective vapor cavities. An example ablation system and an example non-transitory computer-readable medium, both related to the example method, are also disclosed.
    Type: Application
    Filed: December 12, 2019
    Publication date: July 16, 2020
    Inventors: Vera Khokhlova, Michael R. Bailey, Navid Farr, Tatiana D. Khokhlova, Wayne Kreider, Adam D. Maxwell, Ari Partanen, Oleg A. Sapozhnikov, George R. Schade, Yak-Nam Wang
  • Patent number: 10694974
    Abstract: Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as “boiling histotripsy” (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 30, 2020
    Assignees: UNIVERSITY OF WASHINGTON, KONINKLIJKE PHILIPS N.V.
    Inventors: Ari Partanen, Vera Khokhlova, Navid Farr, Donghoon Lee, Wayne Kreider, Tatiana Khokhlova, Adam Maxwell, Yak-Nam Wang, George Schade, Michael Bailey
  • Publication number: 20200037916
    Abstract: Disclosed herein are example embodiments of devices, systems, and methods for mechanical fractionation of biological tissue using magnetic resonance imaging (MRI) feedback control. The examples may involve displaying an image representing first MRI data corresponding to biological tissue, and receiving input identifying one or more target regions of the biological tissue to be mechanically fractionated via exposure to first ultrasound waves. The examples may further involve applying the first ultrasound waves and, contemporaneous to or after applying the first ultrasound waves, acquiring second MRI data corresponding to the biological tissue. The examples may also involve determining, based on the second MRI data, one or more second parameters for applying second ultrasound waves to the biological tissue, and applying the second ultrasound waves to the biological tissue according to the one or more second parameters.
    Type: Application
    Filed: June 17, 2016
    Publication date: February 6, 2020
    Inventors: Ari Partanen, Wayne Kreider, Vera Khokhlova
  • Publication number: 20170072227
    Abstract: An example method includes generating an acoustic ultrasound wave that is focused at a focal point. The method further includes sequentially directing the focal point upon distinct portions of an object to form respective shock waves at the distinct portions of the object. The method further includes, via the respective shock waves, causing the distinct portions of the object to boil and form respective vapor cavities. The method further includes causing substantially uniform ablation of a region of the object that comprises the distinct portions. The substantially uniform ablation is caused via interaction of the respective shock waves with the respective vapor cavities. An example ablation system and an example non-transitory computer-readable medium, both related to the example method, are also disclosed.
    Type: Application
    Filed: March 27, 2015
    Publication date: March 16, 2017
    Applicant: KONINKLIJKE PHILIPS N.V., A CORPORPORATION ORGANIZED AND EXISTING UNDER THE LAWS
    Inventors: Vera KHOKHLOVA, Michael R. BAILEY, Navid FARR, Tatiana D. KHOKHLOVA, Wayne KREIDER, Adam D. MAXWELL, Ari PARTANEN, Oleg A. SAPOZHNIKOV, George R. SCHADE, Yak-Nam WANG
  • Publication number: 20170000376
    Abstract: Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as “boiling histotripsy” (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.
    Type: Application
    Filed: March 27, 2015
    Publication date: January 5, 2017
    Inventors: Ari PARTANEN, Vera KHOKHLOVA, Navid FARR, Donghoon LEE, Wayne KREIDER, Tatiana KHOKHLOVA, Adam MAXWELL, Yak-Nam WANG, George SCHADE, Michael BAILEY
  • Publication number: 20100071189
    Abstract: A method for placing headers in connection with the packing of paper, cardboard, pulp or equivalent web material reels, in which method, one multiaxis industrial robot (1) or equivalent apparatus picks inner headers (2) and outer headers (9) to be placed in the paper reel from storage racks or places (3, 3?, 10, 10?). The invention is implemented such that the inner headers (2) and/or the outer headers (9) are transferred to placing manipulators (4) which move in the longitudinal axial direction of the paper reel and take the inner headers (2) at the heads of the paper reel (5) and/or equivalently the outer headers (9) onto head press planes (11) with a motion in the longitudinal axial direction of the paper reel (6) and in its cross direction (7) or a combination of these motions.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 25, 2010
    Applicant: SAIMATEC ENGINEERING OY
    Inventors: Tapio Korhonen, Risto Laukkanen, Esa Nuutinen, Ari Partanen, Juha Pitkänen