Patents by Inventor Arie Tzvieli

Arie Tzvieli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10080861
    Abstract: Described herein are systems and methods for providing a breathing biofeedback session utilizing thermal measurements. In one embodiment, a system includes at least one inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of a region below the nostrils (THROI) of a user. THROI are indicative of the exhale stream. Optionally, each CAM is located less than 15 cm from the user's face and above the user's upper lip, and does not occlude any of the user's mouth and nostrils. Optionally, THROI include thermal measurements of at least first and second regions below right and left nostrils of the user. The system also includes a user interface configured to provide feedback, calculated based on THROI, as part of a breathing biofeedback session for the user. Optionally, the system includes a computer that calculates the feedback.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 25, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10076270
    Abstract: Described herein are systems and methods for detecting a physiological response based on thermal measurements while accounting for touching the face. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of a region of interest (THROI) on a user's face, and a sensor that provides measurements (M) indicative of times at which the user touches the region of interest (ROI). The system also includes a computer that detects the physiological response based on THROI and M. Optionally, the computer generates feature values based on THROI and M, and utilizes a model to detect, based on the feature values, the physiological response. Optionally, the model was trained based on samples, each including: (i) feature values generated based on previous THROI taken while M indicated touching the ROI, and (ii) a corresponding label indicative of an extent of the physiological response.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 18, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10076250
    Abstract: Described herein are systems and methods for detecting a physiological response based on multispectral data. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of a first region of interest (THROI1) on a user's face, and an inward-facing head-mounted visible-light camera (VCAM) that takes images of a second region of interest (IMROI2) on the face. The first and second regions of interest overlap, and the system includes a computer that detects the physiological response based on THROI1, IMROI2, and a model. Optionally, the model was trained based on previous THROI1 and IMROI2 of the user taken during different days. Optionally, the physiological response is indicative of an occurrence of an emotional state of the user, such as joy, fear, sadness or anger.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 18, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10064559
    Abstract: Brain activity, and in particular which hemisphere is relatively more effective, is correlated with the dominant nostril (i.e., the nostril through which most of the air is exhaled when breathing through the nose). Thus, identifying which of the nostrils is dominant may have various applications. Described herein are systems and methods for identifying the dominant nostril. In one embodiment, a system includes at least one inward-facing head-mounted thermal camera (CAM) and a computer. The at least one CAM does not occlude any of the user's mouth and nostrils and is used to take thermal measurements of first and second regions below the right and left nostrils (THROI1 and THROI2, respectively). The computer identifies the dominant nostril based on THROI1 and THROI2. Optionally, the computer detects, utilizing THROI1 and THROI2, the three-dimensional (3D) shape of the exhale stream from at least one of the nostrils.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 4, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10045737
    Abstract: In order to enable collection of data from a head-mounted inward-facing camera, a clip-on device is attached to eyeglasses. The clip-on device optionally weighs less than 40 g and includes: (i) a body that may be attached and detached, multiple times, from a pair of eyeglasses in order to secure and release the clip-on device from the eyeglasses, (ii) an inward-facing camera fixed to the body, and (iii) a wireless communication module fixed to the body.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: August 14, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10045699
    Abstract: Often the physiological and emotional state of a person can be associated with certain cortical activity that can cause certain thermal patterns on the person's forehead. Thus, thermal measurements of the forehead may be used to differentiate between user states. In one embodiment, a system includes at least one inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of at least first and second regions on the right side of a user's forehead (THR1 and THR2, respectively), and thermal measurements of at least third and fourth regions on the left side of the forehead (THL1 and THL2, respectively). The middles of the first and third regions are at least 1 cm above the middles of the second and fourth regions, respectively. The system also includes a computer that determines, based on THR1, THR2, THL1, and THL2, whether the user is in a normal state or an abnormal state.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: August 14, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 10045726
    Abstract: Described herein are systems and methods for selecting a stressor based on thermal measurements. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) and a computer. CAM takes thermal measurements of a region on a periorbital area (THROI1) of the user. The computer detects extents of stress based on THROI1, receives indications of potential stressors to which the user was exposed while THROI1 were taken, and selects the stressor, from among the potential stressors, based on the indications and the extents. Optionally, during most of the time the user was affected by the stressor, the effect of the stressor, as manifested via changes to THROI1, was higher than the effects of most of the potential stressors. Optionally, thermal measurements of other regions on the face may also be utilized to detect the extents of stress.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: August 14, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 9968264
    Abstract: Manifestation of some physiological responses (e.g., stress, mental workload, or a headache) may involve the emergence of asymmetric thermal patterns on the face. Thus, thermal measurements of the face that are indicative of thermal asymmetry can be useful to detect such physiological responses. In one embodiment, a system includes first and second inward-facing head-mounted thermal cameras (CAM1 and CAM2, respectively) that are located less than 15 cm from the user's face, which take thermal measurements of regions on the right and left sides of the face (THROI1 and THROI2, respectively) of the user. The symmetric overlapping between the regions on the right and left sides (ROI1 and ROI2, respectively) is above 60%, and CAM1 and CAM2 do not occlude ROI1 and ROI2. Optionally, the system includes a computer that detects a physiological response based on thermal asymmetry between THROI1 and THROI2.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 15, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Publication number: 20180116528
    Abstract: A system that detects an irregular physiological response while being exposed to sensitive data includes: a head-mounted display (HMD), an inward-facing head-mounted thermal camera (CAM), and a computer. The HMD exposes sensitive data to the user who wears the HMD. The CAM takes thermal measurements of a region of interest (THROI) on the user's face while the user is exposed to the sensitive data. And the computer detects, based on certain THROI taken while the user was exposed to certain sensitive data, whether the user experienced the irregular physiological response while being exposed to the certain sensitive data.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 3, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180116578
    Abstract: System and method that identify atypical behavior of a user. One embodiment of the system includes an eye tracker to perform tracking of a user's gaze while viewing items, an inward-facing head-mounted thermal camera to take thermal measurements of a region of interest on the face (THROI) of the user, and a computer. The computer generates feature values based on THROI and the tracking, and utilizes a model to identify atypical behavior of the user based on the feature values. The model may be trained based on previous tracking and previous THROI of the user, taken while viewing other items.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 3, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Publication number: 20180104439
    Abstract: Described herein are systems and methods for providing a breathing biofeedback session utilizing thermal measurements. In one embodiment, a system includes at least one inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of a region below the nostrils (THROI) of a user. THROI are indicative of the exhale stream. Optionally, each CAM is located less than 15 cm from the user's face and above the user's upper lip, and does not occlude any of the user's mouth and nostrils. Optionally, THROI include thermal measurements of at least first and second regions below right and left nostrils of the user. The system also includes a user interface configured to provide feedback, calculated based on THROI, as part of a breathing biofeedback session for the user. Optionally, the system includes a computer that calculates the feedback.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180103889
    Abstract: Described herein are systems and methods for selecting a trigger of an allergic reaction. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) and a computer. CAM takes thermal measurements of a region on the nose (THN) of the user. Optionally, CAM weighs below 10 g and is located less than 15 cm from the user's face. The computer detects extents of the allergic reaction based on THN, receives indications of potential triggers of the allergic reaction to which the user was exposed, and selects the trigger, from among the potential triggers, based on the extents and the indications. Optionally, during most of the time the user was affected by the trigger, an effect of the trigger, as manifested via changes to THN, was higher than effects of most of the potential triggers.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180103851
    Abstract: Manifestation of some physiological responses (e.g., stress, mental workload, or a headache) may involve the emergence of asymmetric thermal patterns on the face. Thus, thermal measurements of the face that are indicative of thermal asymmetry can be useful to detect such physiological responses. In one embodiment, a system includes first and second inward-facing head-mounted thermal cameras (CAM1 and CAM2, respectively) that are located less than 15 cm from the user's face, which take thermal measurements of regions on the right and left sides of the face (THROI1 and THROI2, respectively) of the user. The symmetric overlapping between the regions on the right and left sides (ROI1 and ROI2, respectively) is above 60%, and CAM1 and CAM2 do not occlude ROI1 and ROI2. Optionally, the system includes a computer that detects a physiological response based on thermal asymmetry between THROI1 and THROI2.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180103913
    Abstract: Described herein are systems and methods for calculating respiratory parameters based on thermal measurements. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) and a computer. CAM takes thermal measurements of a region below the nostrils (THROI) of a user, and THROI are indicative of the exhale stream. Optionally, CAM is located above the user's upper lip and less than 15 cm from the user's face, and CAM does not occlude any of the user's mouth and nostrils. The computer generates feature values based on THROI and utilizes a model to calculate a respiratory parameter based on the feature values. The model was trained based on previous THROI of the user taken during different days. Optionally, the respiratory parameter is indicative of the user's breathing rate. Optionally, the computer detects whether the user breathed primarily through the mouth or through the nose.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180103894
    Abstract: Thermal measurements of the forehead can be indicative of brain activity, and as such, may be useful for conducting brain-related treatments, such as neurofeedback. In one embodiment, a system for conducting a neurofeedback session includes an inward-facing head-mounted thermal camera (CAM) and a user interface. CAM takes thermal measurements of a region on the forehead (THF) of a user, and is located below the middle of the region. The user interface provides, based on THF, the neurofeedback session for the user. Optionally, a computer controls the neurofeedback session by providing the user feedback via the user interface. The computer may generate the feedback based on the similarity between a current THF pattern and a previous THF pattern of the user taken while the user was in a target state.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Publication number: 20180103903
    Abstract: In order to enable collection of data from a head-mounted inward-facing camera, a clip-on device is attached to eyeglasses. The clip-on device optionally weighs less than 40 g and includes: (i) a body that may be attached and detached, multiple times, from a pair of eyeglasses in order to secure and release the clip-on device from the eyeglasses, (ii) an inward-facing camera fixed to the body, and (iii) a wireless communication module fixed to the body.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Publication number: 20180092589
    Abstract: The three-dimensional (3D) shape of the exhale stream from a user's nostrils is often correlated with the user's state (e.g., an emotional state and/or a certain health condition). Thus, identifying the shape of a user's exhale stream can help determine the user's state. In one embodiment, a system that selects a state of a user includes at least one inward-facing head-mounted thermal camera that takes thermal measurements of at least three regions below the nostrils (THS). THS are indicative of shape of the exhale stream (SHAPE). The system also includes a computer that generates feature values based on THS, which are indicative of the SHAPE, and utilizes a model to select the state of the user, from among potential states of the user, based on the feature values. Optionally, the system includes a user interface that present the user's selected state.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180092586
    Abstract: Described herein are systems and methods for detecting a stress level of a user. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) and a computer. CAM takes thermal measurements of a region on a periorbital area (THROI1) of the user. The computer generates feature values based on THROI1, and utilizes a model to detect the stress level based on the feature values. The model was trained based on: previous THROI1 taken while the user was under elevated stress, and other previous THROI1 taken while the user was not under elevated stress. Some embodiments may utilize additional thermal cameras that take thermal measurements of other regions on the face, which may be utilized to detect the stress level.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank
  • Publication number: 20180092574
    Abstract: Described herein are systems and methods for detecting a physiological response based on thermal measurements while accounting for touching the face. In one embodiment, a system includes an inward-facing head-mounted thermal camera (CAM) that takes thermal measurements of a region of interest (THROI) on a user's face, and a sensor that provides measurements (M) indicative of times at which the user touches the region of interest (ROI). The system also includes a computer that detects the physiological response based on THROI and M. Optionally, the computer generates feature values based on THROI and M, and utilizes a model to detect, based on the feature values, the physiological response. Optionally, the model was trained based on samples, each including: (i) feature values generated based on previous THROI taken while M indicated touching the ROI, and (ii) a corresponding label indicative of an extent of the physiological response.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Publication number: 20180096198
    Abstract: Described herein are systems and methods for detecting a physiological response based on facial skin color changes (FSCC) recognizable in images taken with an inward-facing head-mounted visible-light camera (VCAMin). Some examples of physiological responses whose manifestation involves FSCC include emotional responses (which at times may be hidden to the naked eye), and physiological signals such as a heart rate, heart rate variability, and/or a breathing rate. In one embodiment, a system that detects a physiological response based on FSCC includes VCAMin that takes images of a region of interest (IMROI) on a user's face, which is illuminated by ambient light, and a computer that detects the physiological response based on FSCC recognizable in IMROI. Optionally, the system includes an outward-facing head-mounted visible-light camera (VCAMout) that takes images of the environment (IMENV), and the computer detects the physiological response also based on IMENV.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Applicant: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M. Frank