Patents by Inventor Arijana FILIPIC

Arijana FILIPIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240000169
    Abstract: Methods for the treatment of textiles used for facial masks assure for the inactivation of viruses captured by the textile. The aerosol droplets are absorbed by the textile, and any viruses in the water droplets react with a virucidal substance. The surface of textile fibers is first exposed to gaseous plasma to assure appropriate wettability. The textile is then soaked in a diluted water solution of a virucidal substance. The excessive water solution is optionally removed by draining, and the drained textile is then dried. The methods enable uniform coating of the textile fibers with an extremely thin film of virucidal substance. A typical concentration of the virucidal substance in the textiles treated according to the methods of the aspects of disclosed embodiments is about 10 g/kg. Such a small concentration is benign to humans but effectively inactivates the viruses that might be captured by the textile.
    Type: Application
    Filed: June 22, 2023
    Publication date: January 4, 2024
    Applicants: Jo{hacek over (z)}ef Stefan Institute, National Institute of Biology
    Inventors: Gregor PRIMC, Miran MOZETIC, Mark Zver, Rok ZAPLOTNIK, Alenka VESEL, Arijana FILIPIC, David DOBNIK, Polona Kogovesk, Maja Ravnikar
  • Patent number: 11807555
    Abstract: An energy-efficient disinfection or sterilisation of contaminated liquid, such as water contaminated with viruses or microbes includes an asymmetric configuration of a cavitation nozzle made from dielectric material that enables the formation of a single, stable cavitation bubble of a large volume. A low-pressure gaseous plasma is continuously formed inside the cavitation bubble by electrodes to prevent contact of the metallic electrode with liquid water and Ohmic heating of the contaminated water. The electrodes are connected to a high voltage power supply. The power supply enables formation of a continuous stable gaseous discharge inside the cavitation bubble and radicals and radiation useful for destruction of viruses to the levels below the current US EPA standard in few minutes, while the temperature of liquid water remains practically unchanged. Use is not only for hospitals and pharmaceutical companies but the food industry and agriculture as well.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: November 7, 2023
    Assignees: Jozef Stefan Institute, National Institute of Biology, University of Ljubljana
    Inventors: Gregor Primc, Rok Zaplotnik, Miran Mozetic, Arijana Filipic, Ion Gutierrez Aguirre, David Dobnik, Matevz Dular, Martin Petkovsek
  • Publication number: 20220106206
    Abstract: An energy-efficient disinfection or sterilisation of contaminated liquid, such as water contaminated with viruses or microbes includes an asymmetric configuration of a cavitation nozzle made from dielectric material that enables the formation of a single, stable cavitation bubble of a large volume. A low-pressure gaseous plasma is continuously formed inside the cavitation bubble by electrodes to prevent contact of the metallic electrode with liquid water and Ohmic heating of the contaminated water. The electrodes are connected to a high voltage power supply. The power supply enables formation of a continuous stable gaseous discharge inside the cavitation bubble and radicals and radiation useful for destruction of viruses to the levels below the current US EPA standard in few minutes, while the temperature of liquid water remains practically unchanged. Use is not only for hospitals and pharmaceutical companies but the food industry and agriculture as well.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 7, 2022
    Applicants: Jozef Stefan Institute, National Institute of Biology, University of Ljubljana
    Inventors: Gregor PRIMC, Rok ZAPLOTNIK, Miran Mozetic, Arijana FILIPIC, Ion GUTIERREZ AGUIRRE, David DOBNIK, Matevz DULAR, Martin PETKOVSEK