Patents by Inventor Arindam Dasgupta

Arindam Dasgupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170268344
    Abstract: A method of manufacturing a gas turbine engine component (10) and the component so formed. The method includes: stacking a plurality of CMC layers (16) along a metal core (30) to form a stack of disconnected CMC layers, wherein adjacent edge faces (46) of the layers define a surface (44); additively depositing ceramic material (14) to only selected portions of the surface (44) to bond together at least some of the layers at their respective edge faces; and selecting locations for the depositing of the ceramic material to achieve a predetermined mechanical characteristic of the resulting component.
    Type: Application
    Filed: March 18, 2016
    Publication date: September 21, 2017
    Inventors: Arindam Dasgupta, Anand Kulkarni, Ahmed Kamel
  • Publication number: 20170077376
    Abstract: A small-scale thermoelectric power generator and combustion apparatus, components thereof, methods for making the same, and applications thereof. The thermoelectric power generator can include a burner including a matrix stabilized combustion chamber comprising a catalytically enhanced, porous flame containment portion. The combustion apparatus can include components connected in a loop configuration including a vaporization chamber; a mixing chamber connected to the vaporization chamber; a combustion chamber connected to the vaporization chamber; and a heat exchanger connected to the combustion chamber. The combustion chamber can include a porous combustion material which can include a unique catalytic material.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 16, 2017
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Nina Orlovskaya, Anthony Terracciano, Arindam Dasgupta
  • Patent number: 9118054
    Abstract: A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: August 25, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Mallika Gummalla, Jean Yamanis, Benoit Olsommer, Zissis Dardas, Robert Bayt, Hari Srinivasan, Arindam Dasgupta, Larry Hardin
  • Publication number: 20130239542
    Abstract: A turbine engine has a fan comprising a duct and supporting struts, a first compressor configured to pressurize inlet air, and a second compressor configured to further pressurize the inlet air. A cooling circuit is located to cool the inlet air after the inlet air is pressurized by the first compressor and before the inlet air is further pressurized by the second compressor, and includes at least intercooler configured to transfer heat from inlet air to a secondary fluid heat sink.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Arindam Dasgupta, Om P. Sharma
  • Patent number: 8394552
    Abstract: A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 12, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Mallika Gummalla, Jean Yamanis, Benoit Olsommer, Zissis Dardas, Robert Bayt, Hari Srinivasan, Arindam Dasgupta, Larry Hardin
  • Patent number: 8147600
    Abstract: A fuel gas removal system includes a venturi for reducing a pressure of the fuel, a bubble separator containing media to assist in the formation of gas bubbles within the fuel to separate the gas bubbles from the fuel, and a port to remove gas bubbles created by the reduction of pressure of the fuel and the bubble separator.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 3, 2012
    Assignee: United Technologies Corporation
    Inventors: Neal R. Herring, Arindam Dasgupta, Haralambos Cordatos, Thomas G. Tillman, Jeremiah C. Lee
  • Publication number: 20100242736
    Abstract: A fuel gas removal system includes a venturi for reducing a pressure of the fuel, a bubble separator containing media to assist in the formation of gas bubbles within the fuel to separate the gas bubbles from the fuel, and a port to remove gas bubbles created by the reduction of pressure of the fuel and the bubble separator.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Inventors: Neal R. Herring, Arindam Dasgupta, Haralambos Cordatos, Thomas G. Tillman, Jeremiah C. Lee
  • Patent number: 7753036
    Abstract: A compound cycle engine system has a rotary engine, which rotary engine generates exhaust gas. The system further has a compressor for increasing the pressure of inlet air to be supplied to the engine to a pressure in the range of from 3.0 to 5.0 atmospheres and an intercooler for providing the inlet air to the engine at a temperature in the range of from 150 to 250 degrees Fahrenheit. The system further has one or more turbines for extracting energy from the exhaust gas. The Miller Cycle is implemented in the rotary engine, enabling the compression ratio to be lower than the expansion ratio, allowing the overall cycle to be optimized for lowest weight and specific fuel consumption.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: July 13, 2010
    Assignee: United Technologies Corporation
    Inventors: Charles E. Lents, Stephen P. Zeppieri, Roy N. Guile, Vincent C. Nardone, Jonathan Lauter, Arindam Dasgupta
  • Publication number: 20090007882
    Abstract: A compound cycle engine system has a rotary engine, which rotary engine generates exhaust gas. The system further has a compressor for increasing the pressure of inlet air to be supplied to the engine to a pressure in the range of from 3.0 to 5.0 atmospheres and an intercooler for providing the inlet air to the engine at a temperature in the range of from 150 to 250 degrees Fahrenheit. The system further has one or more turbines for extracting energy from the exhaust gas. The Miller Cycle is implemented in the rotary engine, enabling the compression ratio to be lower than the expansion ratio, allowing the overall cycle to be optimized for lowest weight and specific fuel consumption.
    Type: Application
    Filed: July 2, 2007
    Publication date: January 8, 2009
    Inventors: Charles E. Lents, Stephen P. Zeppieri, Roy N. Guile, Vincent C. Nardone, Jonathan Lauter, Arindam Dasgupta
  • Publication number: 20080070078
    Abstract: A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Inventors: Mallika Gummalla, Jean Yamanis, Benoit Olsommer, Zissis Dardas, Robert Bayt, Hari Srinivasan, Arindam Dasgupta, Larry Hardin
  • Patent number: 6318077
    Abstract: An integrated thermal and exhaust management unit for a vehicle comprises a housing defining a chamber and having an inlet through which engine exhaust gas flows. A fuel-fired heater is adjacent to the housing and is operable to heat the engine exhaust gas flowing through the chamber. A catalytic converter is adjacent to and in downstream flow communication with the chamber for catalyzing the engine exhaust gas flowing therethrough. An exhaust gas heat recovery unit is radially adjacent to and in downstream flow communication with the catalytic converter for exchanging exhaust gas heat to liquid heat for transferring to heat-requiring areas of the vehicle. A controller controls the operation of the management unit whereby the fuel-fired heater is powered if the catalyst temperature is less than a catalyst light-off temperature for efficient treatment of vehicle emissions.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: November 20, 2001
    Assignee: General Motors Corporation
    Inventors: George M. Claypole, Gregory Alan Major, Arindam Dasgupta