Patents by Inventor Aris N. Economides
Aris N. Economides has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10640800Abstract: Provided herein is a mouse that produces hybrid antibodies containing human variable regions and mouse constant regions.Type: GrantFiled: July 19, 2016Date of Patent: May 5, 2020Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn MacDonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Publication number: 20200115440Abstract: Methods for treating Fibrodysplasia Ossificans Progressiva (FOP) are provided. Such methods involve administering to a subject having FOP an effective regime of an activin receptor type 2A (ACVR2A) and/or an activin receptor type 2B (ACVR2B) antagonist or an activin receptor type 1 (ACVR1) antagonist. Antagonists include fusion proteins of one or more extracellular domains (ECDs) of ACVR2A, ACVR2B and/or ACVR1 and the Fc domain of an immunoglobulin heavy chain, and antibodies against ACVR2A, ACVR2B, ACVR1 or Activin A.Type: ApplicationFiled: September 23, 2019Publication date: April 16, 2020Applicant: REGENERON PHARMACEUTICALS, INC.Inventors: Sarah J. Hatsell, Aris N. Economides, Vincent J. Idone
-
Publication number: 20200107527Abstract: Provided are non-human animals comprising a mutation in the Fbn1 gene to model neonatal progeroid syndrome with congenital lipodystrophy (NPSCL). Also provided are methods of making such non-human animal models. The non-human animal models can be used for screening compounds for activity in inhibiting or reducing NPSCL or ameliorating NPSCL-like symptoms or screening compounds for activity potentially harmful in promoting or exacerbating NPSCL as well as to provide insights in to the mechanism of NPSCL and potentially new therapeutic and diagnostic targets.Type: ApplicationFiled: December 17, 2019Publication date: April 9, 2020Applicant: Regeneron Pharmaceuticals, Inc.Inventors: Charleen Hunt, Jason Mastaitis, Guochun Gong, Ka-Man Venus Lai, Jesper Gromada, Aris N. Economides
-
Patent number: 10584364Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: October 4, 2013Date of Patent: March 10, 2020Assignee: Rgeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Patent number: 10548302Abstract: Provided are non-human animals comprising a mutation in the Fbn1 gene to model neonatal progeroid syndrome with congenital lipodystrophy (NPSCL). Also provided are methods of making such non-human animal models. The non-human animal models can be used for screening compounds for activity in inhibiting or reducing NPSCL or ameliorating NPSCL-like symptoms or screening compounds for activity potentially harmful in promoting or exacerbating NPSCL as well as to provide insights in to the mechanism of NPSCL and potentially new therapeutic and diagnostic targets.Type: GrantFiled: July 28, 2017Date of Patent: February 4, 2020Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Charleen Hunt, Jason Mastaitis, Guochun Gong, Ka-Man Venus Lai, Jesper Gromada, Aris N. Economides
-
Patent number: 10531648Abstract: A genetically modified mouse is provided that comprises a conditional Acvr1 allele that comprises a mutated exon that, upon induction, converts to a mutant exon phenotype, wherein the mutant exon phenotype includes ectopic bone formation. Mice comprising a mutant Acvr1 exon 5 in antisense orientation, flanked by site-specific recombinase recognition sites, are provided, wherein the mice further comprise a site-specific recombinase that recognizes the site-specific recombinase recognitions sites, wherein the recombinase is induced upon exposure of the mouse to tamoxifen. Upon exposure to tamoxifen, the recombinase is expressed and acts on the RRS-flanked mutant exon 5 and places the mutant exon 5 in sense orientation and deletes the wild-type exon.Type: GrantFiled: October 30, 2018Date of Patent: January 14, 2020Assignee: REGENERON PHARMACEUTICALS, INC.Inventors: Aris N. Economides, Sarah Jane Hatsell
-
Patent number: 10526630Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: October 4, 2013Date of Patent: January 7, 2020Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Publication number: 20190390230Abstract: Nucleic acid constructs and methods for rendering modifications to a genome are provided, wherein the modifications comprise null alleles, conditional alleles and null alleles comprising COINs. Multifunctional alleles (MFA) are provided, as well as methods for making them, which afford the ability in a single targeting to introduce an allele that can be used to generate a null allele, a conditional allele, or an allele that is a null allele and that further includes a COIN. MFAs comprise pairs of cognate recombinase recognition sites, an actuating sequence and/or a drug selection cassette, and a nucleotide sequence of interest, and a COIN, wherein upon action of a recombinase a conditional allele with a COIN is formed. In a further embodiment, action of a second recombinase forms an allele that contains only a COIN in sense orientation. In a further embodiment, action by a third recombinase forms an allele that contains only the actuating sequence in sense orientation.Type: ApplicationFiled: July 1, 2019Publication date: December 26, 2019Applicant: REGENERON PHARMACEUTICALS, INC.Inventors: Aris N. Economides, Andrew J. Murphy, Peter Matthew Lengyel, Peter H.A. Yang
-
Publication number: 20190380315Abstract: A genetically modified rodent is provided that comprises a modified Acvr1 gene that comprises a conditional altered exon 7 encoding R258G in anti sense orientation, flanked by site-specific recombinase recognition sites, wherein the altered exon is inverted to sense orientation upon action of a recombinase, resulting in ectopic bone formation.Type: ApplicationFiled: June 12, 2019Publication date: December 19, 2019Applicant: Regeneron Pharmaceuticals, Inc.Inventors: Sarah J. HATSELL, Aris N. ECONOMIDES, Christopher SCHOENHERR, Vincent J. IDONE
-
Patent number: 10470444Abstract: A genetically modified mouse is provided that comprises a conditional Acvr1 allele that comprises a mutated exon that, upon induction, converts to a mutant exon phenotype, wherein the mutant exon phenotype includes ectopic bone formation. Mice comprising a mutant Acvr1 exon 5 in antisense orientation, flanked by site-specific recombinase recognition sites, are provided, wherein the mice further comprise a site-specific recombinase that recognizes the site-specific recombinase recognitions sites, wherein the recombinase is induced upon exposure of the mouse to tamoxifen. Upon exposure to tamoxifen, the recombinase is expressed and acts on the RRS-flanked mutant exon 5 and places the mutant exon 5 in sense orientation and deletes the wild-type exon.Type: GrantFiled: October 30, 2018Date of Patent: November 12, 2019Assignee: REGENERON PHARMACEUTICALS, INC.Inventors: Aris N. Economides, Sarah Jane Hatsell
-
Patent number: 10448621Abstract: A genetically modified mouse is provided that comprises a conditional Acvr1 allele that comprises a mutated exon that, upon induction, converts to a mutant exon phenotype, wherein the mutant exon phenotype includes ectopic bone formation. Mice comprising a mutant Acvr1 exon 5 in antisense orientation, flanked by site-specific recombinase recognition sites, are provided, wherein the mice further comprise a site-specific recombinase that recognizes the site-specific recombinase recognitions sites, wherein the recombinase is induced upon exposure of the mouse to tamoxifen. Upon exposure to tamoxifen, the recombinase is expressed and acts on the RRS-flanked mutant exon 5 and places the mutant exon 5 in sense orientation and deletes the wild-type exon.Type: GrantFiled: May 18, 2018Date of Patent: October 22, 2019Assignee: REGENERON PHARMACEUTICALS, INC.Inventors: Aris N. Economides, Sarah Jane Hatsell
-
Publication number: 20190309061Abstract: The present invention provides multispecific antigen-binding molecules and uses thereof. The multispecific antigen-binding molecules comprise a first antigen-binding domain that specifically binds a target molecule, and a second antigen-binding domain that specifically binds an internalizing effector protein. The multispecific antigen-binding molecules of the present invention can, in some embodiments, be bispecific antibodies that are capable of binding both a target molecule and an internalizing effector protein. In certain embodiments of the invention, the simultaneous binding of the target molecule and the internalizing effector protein by the multispecific antigen-binding molecule of the present invention results in the attenuation of the activity of the target molecule to a greater extent than the binding of the target molecule alone.Type: ApplicationFiled: April 25, 2019Publication date: October 10, 2019Inventors: Nicholas J. Papadopoulos, Andrew J. Murphy, Aris N. Economides, Katherine Diana Cygnar
-
Patent number: 10392633Abstract: Nucleic acid constructs and methods for rendering modifications to a genome are provided, wherein the modifications comprise null alleles, conditional alleles and null alleles comprising COINs. Multifunctional alleles (MFA) are provided, as well as methods for making them, which afford the ability in a single targeting to introduce an allele that can be used to generate a null allele, a conditional allele, or an allele that is a null allele and that further includes a COIN. MFAs comprise pairs of cognate recombinase recognition sites, an actuating sequence and/or a drug selection cassette, and a nucleotide sequence of interest, and a COIN, wherein upon action of a recombinase a conditional allele with a COIN is formed. In a further embodiment, action of a second recombinase forms an allele that contains only a COIN in sense orientation. In a further embodiment, action by a third recombinase forms an allele that contains only the actuating sequence in sense orientation.Type: GrantFiled: July 12, 2013Date of Patent: August 27, 2019Assignee: REGENERON PHARMACEUTICALS, INC.Inventors: Aris N. Economides, Andrew J. Murphy, Peter Matthew Lengyel, Peter H. A. Yang
-
Patent number: 10377817Abstract: The present invention provides antibodies that bind to human gremlin-1 (GREM1), and methods of use. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to GREM1. The antibodies of the invention are useful for inhibiting or neutralizing GREM1 activity, thus providing a means of treating a GREM1-related disease or disorder such as fibrosis and cancer. In some embodiments, the antibodies of the present invention are used in treating at least one symptom or complication of fibrosis of the liver, lungs or kidney.Type: GrantFiled: March 7, 2014Date of Patent: August 13, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Aris N. Economides, Vincent J. Idone, Lori C. Morton
-
Patent number: 10378040Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: September 25, 2013Date of Patent: August 13, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Patent number: 10378037Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: September 24, 2013Date of Patent: August 13, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Patent number: 10378038Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: September 25, 2013Date of Patent: August 13, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Patent number: 10378039Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: September 25, 2013Date of Patent: August 13, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
-
Patent number: 10344299Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.Type: GrantFiled: May 23, 2017Date of Patent: July 9, 2019Assignee: Regeneron Pharmaceuticals, Inc.Inventors: Aris N. Economides, Andrew J. Murphy, David M. Valenzuela, David Frendewey, George D. Yancopoulos
-
Publication number: 20190153085Abstract: Methods for treating Fibrodysplasia Ossificans Progressiva (FOP) are provided in which a subject having FOP is administered an effective regime of an antibody against Activin B, BMP9 or BMP10.Type: ApplicationFiled: November 19, 2018Publication date: May 23, 2019Inventors: Sarah J. Hatsell, Aris N. Economides, Vincent J. Idone