Patents by Inventor Arjun D. Sharma

Arjun D. Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170231505
    Abstract: An apparatus includes a sensing circuit configured to generate a sensed physiological signal that includes physiological information of a subject, a detection circuit, and a control circuit. The detection circuit detects a physiological condition of a subject using the physiological signal. The control circuit stores sampled values of a segment of the physiological signal in temporary memory storage; and stores the sampled values in non-temporary storage in response to receiving an indication of continued detection of the physiological condition.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 17, 2017
    Inventors: Deepa Mahajan, David L. Perschbacher, Arjun D. Sharma
  • Patent number: 9440088
    Abstract: The technology disclosed herein relates to a method for lead analysis for an implanted medical device. A summary data record is retrieved associated with one or more episodes from an implanted medical device through a communication module. Episode selection criteria are applied to the summary data record by a processing module. One or more episode data records are retrieved from the implanted medical device for one or more episodes for which the episode selection criteria was satisfied. Noise detection criteria are applied to the episode data record. A notification module is configured to generate an alert if the noise detection criteria are satisfied.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 13, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Arjun D. Sharma, Jeffry V. Marshik
  • Publication number: 20160030752
    Abstract: Implanted medical device data is received, where the data was sensed by a first lead portion and a sensor over a time period. The number of detected noise events sensed by the first lead portion is counted based on applying first noise detection criteria to the data sensed by the first lead portion. The number of detected noise events over the sensor is counted based on applying second noise detection criteria to the data sensed by the sensor. The mean number of detected noise events is calculated for the first lead portion and sensor based on the number of noise events sensed by the first lead portion and the number of noise events sensed by the sensor. Potential lead failure in the first lead is recorded if the number of detected noise events over the first lead is greater than the mean number of noise events by at least 5%.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Inventors: Deepa Mahajan, David L. Perschbacher, Arjun D. Sharma
  • Patent number: 9126045
    Abstract: A neurostimulation system measures a cardiac parameter at various cardiac intervals and analyzes its restitution, including computing a restitution slope being a rate of change of the restitution parameter with respect to change in the cardiac interval. In various embodiments, the system uses the restitution slope to provide for adaptive control of neurostimulation. In various embodiments, one or more cardiac parameters such as action potential duration (APD), conduction velocity (CV), QT interval (QT), and/or T-wave morphology (TM) parameter are measured and analyzed for restitution of each parameter, which is then used to control the delivery of the neurostimulation.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 8, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shibaji Shome, Stephen Ruble, Jason J. Hamann, Stephen J. Hahn, Arjun D. Sharma
  • Publication number: 20150202441
    Abstract: An example of a system may include a depletion block neural stimulator and a depletion block controller. The depletion block neural stimulator may be configured to deliver a depletion block stimulation to a nerve. The depletion block stimulation may include a series of pulses at a pulse frequency within a range between about 100 Hz to about 1000 Hz. The depletion block controller may be configured to communicate with the depletion block neural stimulator and control the depletion block stimulation. The depletion block controller may be configured to receive a start depletion block signal and respond to the received start depletion block signal by initiating the delivery of the depletion block stimulation to the nerve, and the depletion block controller may be configured to receive a stop depletion block signal and respond to the received stop depletion block signal by terminating the delivery of the depletion block stimulation to the nerve.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 23, 2015
    Inventors: Manfred Franke, David J. Ternes, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble, Jason J. Hamann, Arjun D. Sharma
  • Publication number: 20150100103
    Abstract: Methods and device for determining a pacing vector for delivering an electrostimulation therapy are described. An implantable medical device may be configured to determine an anode capture threshold and a cathode capture threshold for a first anode and cathode pair of electrodes, switch a polarity of the first anode and cathode pair of electrodes, and determine an anode capture threshold and a cathode capture threshold for the first anode and cathode pair of electrodes having the switched polarity. The implantable medical device may be further configured to compare a cathodal capture threshold for the anode and cathode pair having the switched polarity to the anodal capture threshold of the first anode and cathode pair of electrodes and select either an anode or a cathode for delivering an electrostimulation therapy based at least in part on the comparison. Other methods and systems are also contemplated and described.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 9, 2015
    Inventors: Holly E. Rockweiler, Shibaji Shome, Arjun D. Sharma, Deepa Mahajan, Sunipa Saha
  • Patent number: 8983603
    Abstract: A heart rate variability or heart rate variation can be identified using sensed and/or paced heart beats. One or more patient metrics, such as a variability index or a variation index, can correspond to the identified heart rate variability or heart rate variation. The patient metrics can be used to identify a need for a particular therapy, such as a rate-responsive pacing therapy. The patient metrics can be used to identify patients at an elevated risk of death. Methods and systems to identify therapy indications or at-risk patients are provided. In an example, a patient risk profile can be adjusted, such as in response to an identified patient heart rate variability or heart rate variation. In an example, a rate-responsive pacing mode can be used to adjust the patient risk profile.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Arjun D. Sharma, Craig Stolen, Kira Q. Stolen, Milan Seth, Paul W. Jones
  • Patent number: 8929981
    Abstract: A heart rate variability or heart rate variation can be identified using sensed and/or paced heart beats. One or more patient metrics, such as a variability index or a variation index, can correspond to the identified heart rate variability or heart rate variation. The patient metrics can be used to identify a need for a particular therapy, such as a rate-responsive pacing therapy. The patient metrics can be used to identify patients at an elevated risk of death. Methods and systems to identify therapy indications or at-risk patients are provided. In an example, a patient risk profile can be adjusted, such as in response to an identified patient heart rate variability or heart rate variation. In an example, a rate-responsive pacing mode can be used to adjust the patient risk profile.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 6, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Arjun D. Sharma, Craig Stolen, Kira Q. Stolen, Milan Seth, Paul W. Jones
  • Publication number: 20140163629
    Abstract: The technology disclosed herein relates to a method for lead analysis for an implanted medical device. A summary data record is retrieved associated with one or more episodes from an implanted medical device through a communication module. Episode selection criteria are applied to the summary data record by a processing module. One or more episode data records are retrieved from the implanted medical device for one or more episodes for which the episode selection criteria was satisfied. Noise detection criteria are applied to the episode data record.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Arjun D. Sharma, Jeffry V. Marshik
  • Publication number: 20130150912
    Abstract: A heart rate variability or heart rate variation can be identified using sensed and/or paced heart beats. One or more patient metrics, such as a variability index or a variation index, can correspond to the identified heart rate variability or heart rate variation. The patient metrics can be used to identify a need for a particular therapy, such as a rate-responsive pacing therapy. The patient metrics can be used to identify patients at an elevated risk of death. Methods and systems to identify therapy indications or at-risk patients are provided. In an example, a patient risk profile can be adjusted, such as in response to an identified patient heart rate variability or heart rate variation. In an example, a rate-responsive pacing mode can be used to adjust the patient risk profile.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Inventors: David L. Perschbacher, Arjun D. Sharma, Craig Stolen, Kira Q. Stolen, Milan Seth, Paul W. Jones
  • Publication number: 20130150911
    Abstract: A heart rate variability or heart rate variation can be identified using sensed and/or paced heart beats. One or more patient metrics, such as a variability index or a variation index, can correspond to the identified heart rate variability or heart rate variation. The patient metrics can be used to identify a need for a particular therapy, such as a rate-responsive pacing therapy. The patient metrics can be used to identify patients at an elevated risk of death. Methods and systems to identify therapy indications or at-risk patients are provided. In an example, a patient risk profile can be adjusted, such as in response to an identified patient heart rate variability or heart rate variation. In an example, a rate-responsive pacing mode can be used to adjust the patient risk profile.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Inventors: David L. Perschbacher, Arjun D. Sharma, Craig Stolen, Kira Q. Stolen, Milan Seth, Paul W. Jones
  • Patent number: 8447390
    Abstract: Detected changes in atrial activation can be used to discriminate between hemodynamically stable and hemodynamically unstable tachyarrhythmias.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 21, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, Arjun D. Sharma
  • Publication number: 20130053914
    Abstract: A neurostimulation system measures a cardiac parameter at various cardiac intervals and analyzes its restitution, including computing a restitution slope being a rate of change of the restitution parameter with respect to change in the cardiac interval. In various embodiments, the system uses the restitution slope to provide for adaptive control of neurostimulation. In various embodiments, one or more cardiac parameters such as action potential duration (APD), conduction velocity (CV), QT interval (QT), and/or T-wave morphology (TM) parameter are measured and analyzed for restitution of each parameter, which is then used to control the delivery of the neurostimulation.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 28, 2013
    Inventors: Shibaji Shome, Stephen Ruble, Jason J. Hamann, Stephen J. Hahn, Arjun D. Sharma
  • Publication number: 20130035605
    Abstract: Detected changes in atrial activation can be used to discriminate between hemodynamically stable and hemodynamically unstable tachyarrhythmias.
    Type: Application
    Filed: October 12, 2012
    Publication date: February 7, 2013
    Inventors: Dan Li, Arjun D. Sharma