Patents by Inventor Arjun K. Pathak

Arjun K. Pathak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068072
    Abstract: A method is provided of making a magnetocaloric alloy composition comprising Ni, Co, Mn, and Ti, which preferably includes certain beneficial substitutional elements, by melting the composition and rapidly solidifying the melted composition at a cooling rate of at least 100 K/second (Kelvin/second) to improve a magnetocaloric property of the composition. The rapidly solidified composition can be heat treated to homogenize the composition and annealed to tune the magneto-structural transition for use in a regenerator.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Inventors: Henrique Neves Bez, Anis Biswas, Arjun K. Pathak, Yaroslav Mudryk, Nikolai A. Zarkevich, Viktor Balema, Vitalij K. Pecharsky
  • Patent number: 11851731
    Abstract: A method is provided of making a magnetocaloric alloy composition comprising Ni, Co, Mn, and Ti, which preferably includes certain beneficial substitutional elements, by melting the composition and rapidly solidifying the melted composition at a cooling rate of at least 100 K/second (Kelvin/second) to improve a magnetocaloric property of the composition. The rapidly solidified composition can be heat treated to homogenize the composition and annealed to tune the magneto-structural transition for use in a regenerator.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 26, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Henrique Neves Bez, Anis Biswas, Arjun K. Pathak, Yaroslav Mudryk, Nikolai A. Zarkevich, Viktor Balema, Vitalij K Pecharsky
  • Publication number: 20230227988
    Abstract: A cathode is provided for electrolysis of water wherein the cathode material comprises a multi-principal element, transition metal dichalcogenide material that has four or more chemical elements and that is a single phase, solid solution. The pristine cathode material does not contain platinum as a principal (major) component. However, a cathode comprising a transition metal dichalcogenide having platinum (Pt) nanosized islands or precipitates disposed thereon is also provided.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 20, 2023
    Inventors: Viktor Balema, Sonal Padalkar, Ihor Hlova, Tian Lan, Oleksandr Dolotko, Vitalij K. Pecharsky, Duane D. Johnson, Arjun K. Pathak, Prashant Singh
  • Patent number: 11585000
    Abstract: A cathode is provided for electrolysis of water wherein the cathode material comprises a multi-principal element, transition metal dichalcogenide material that has four or more chemical elements and that is a single phase, solid solution. The pristine cathode material does not contain platinum as a principal (major) component. However, a cathode comprising a transition metal dichalcogenide having platinum (Pt) nanosized islands or precipitates disposed thereon is also provided.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 21, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Viktor Balema, Sonal Padalkar, Ihor Hlova, Tian Lan, Oleksandr Dolotko, Vitalij K. Pecharsky, Duane D. Johnson, Arjun K. Pathak, Prashant Singh
  • Publication number: 20220238262
    Abstract: A magnetocaloric material comprising a La—Fe—Si based alloy composition that is compositionally modified to include a small but effective amount of at least one of Al, Ga, and In to improve mechanical stability of the alloy (substantially reduce alloy brittleness), improve thermal conductivity, and preserve comparable or provide improved magnetocaloric effects. The alloy composition may be further modified by inclusion of at least one of Co, Mn, Cr, and V as well as interstitial hydrogen.
    Type: Application
    Filed: February 16, 2022
    Publication date: July 28, 2022
    Inventors: Arjun K. Pathak, Yaroslav Mudryk, Oleksandr Dolotko, Vitalij K. Pecharsky
  • Patent number: 11289248
    Abstract: A magnetocaloric material comprising a La—Fe—Si based alloy composition that is compositionally modified to include a small but effective amount of at least one of Al, Ga, and In to improve mechanical stability of the alloy (substantially reduce alloy brittleness), improve thermal conductivity, and preserve comparable or provide improved magnetocaloric effects. The alloy composition may be further modified by inclusion of at least one of Co, Mn, Cr, and V as well as interstitial hydrogen.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 29, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Arjun K. Pathak, Yaroslav Mudryk, Oleksandr Dolotko, Vitalij K. Pecharsky
  • Publication number: 20200109479
    Abstract: A cathode is provided for electrolysis of water wherein the cathode material comprises a multi-principal element, transition metal dichalcogenide material that has four or more chemical elements and that is a single phase, solid solution. The pristine cathode material does not contain platinum as a principal (major) component. However, a cathode comprising a transition metal dichalcogenide having platinum (Pt) nanosized islands or precipitates disposed thereon is also provided.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 9, 2020
    Inventors: Viktor Balema, Sonal Padalkar, Ihor Hlova, Tian Lan, Oleksandr Dolotko, Vitalij K. Pecharsky, Duane D. Johnson, Arjun K. Pathak, Prashant Singh
  • Publication number: 20190272933
    Abstract: A magnetocaloric material comprising a La—Fe—Si based alloy composition that is compositionally modified to include a small but effective amount of at least one of Al, Ga, and In to improve mechanical stability of the alloy (substantially reduce alloy brittleness), improve thermal conductivity, and preserve comparable or provide improved magnetocaloric effects. The alloy composition may be further modified by inclusion of at least one of Co, Mn, Cr, and V as well as interstitial hydrogen.
    Type: Application
    Filed: February 11, 2019
    Publication date: September 5, 2019
    Inventors: Arjun K. Pathak, Yaroslav Mudryk, Dolotko Oleksandr, Vitalij K. Pecharsky
  • Publication number: 20190214169
    Abstract: A method is provided of making a magnetocaloric alloy composition comprising Ni, Co, Mn, and Ti, which preferably includes certain beneficial substitutional elements, by melting the composition and rapidly solidifying the melted composition at a cooling rate of at least 100 K/second (Kelvin/second) to improve a magnetocaloric property of the composition. The rapidly solidified composition can be heat treated to homogenize the composition and annealed to tune the magneto-structural transition for use in a regenerator.
    Type: Application
    Filed: December 20, 2018
    Publication date: July 11, 2019
    Inventors: Henrique Neves Bez, Anis Biswas, Arjun K. Pathak, Yaroslav Mudryk, Nikolai A. Zarkevich, Viktor Balema, Vitalij K. Pecharsky