Patents by Inventor Arjun Raghuraman

Arjun Raghuraman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250115711
    Abstract: Alkylene oxides are polymerized in the presence of a catalyst system that includes a double metal cyanide catalyst. At least one additive is present. The additive is an alkali metal, ammonium or quaternary ammonium salt of a monocarboxylic acid having up to 24 carbon atoms; monobasic potassium phosphate, a monobasic ammonium or quaternary ammonium phosphate, a dibasic ammonium and quaternary ammonium phosphate or phosphoric acid.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 10, 2025
    Inventors: David K. Steelman, Nima Nikbin, Arjun Raghuraman, Robin P. Ziebarth, John W. Weston
  • Patent number: 12221514
    Abstract: A process for purifying a polyether polyol including treating the polyether polyol with a mixture of: (i) a sulfonic acid catalyst, wherein the catalyst includes a substituted or unsubstituted alkyl group of at least 6 carbon atoms, and (ii) water to reduce residual levels of acetal linkages present in the polyether polyol; a purified polyether polyol prepared using the above treatment process; and a polyurethane product prepared by reacting the above purified polyether polyol and an isocyanate.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: February 11, 2025
    Assignee: Dow Global Technologies LLC
    Inventors: Marinus A. Bigi, Arjun Raghuraman
  • Publication number: 20250034334
    Abstract: Polyether polyols are prepared by polymerizing one or more alkylene oxides in the presence of a Lewis acid polymerization catalyst. The reaction is performed by forming a starting reaction mixture containing a starter and catalyst. The alkylene oxide and more catalyst are then added simultaneously. continuously and separately under reaction conditions that include a temperature of at least 75° C.
    Type: Application
    Filed: December 13, 2022
    Publication date: January 30, 2025
    Inventors: Julibeth M. Martinez, Arjun Raghuraman, Carlos M. Villa, Sukaran Singh Arora, Ankita Majumder
  • Patent number: 12202931
    Abstract: Hydroxyl-containing copolymers of butylene oxide and ethylene oxide having a hydroxyl equivalent weight of at least 150, an average of 1.8 to 6 hydroxyl groups per molecule of which hydroxyl groups at least 70% are primary hydroxyl groups and an oxyethylene content of no greater than 10% by weight based on the weight of the copolymer, are useful for making polyurethanes. These polyols are characterized by high reactivity and fast curing times. Polyurethanes made using these polyols have excellent mechanical properties and are highly hydrophobic.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: January 21, 2025
    Assignee: Dow Global Technologies LLC
    Inventors: Kshitish A. Patankar, Arjun Raghuraman, Thomas P. Willumstad, Mark F. Sonnenschein, Jody Henning, Heather A. Spinney, David R. Wilson, Sukrit Mukhopadhyay
  • Patent number: 12173233
    Abstract: A coated article comprises an article, and one or more amide based coatings on an outer surface of the proppant particle, the amide based coating include the reaction product of an isocyanate component that includes at least one isocyanate and a carboxylic acid component that includes one or more poly-carboxylic acids.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 24, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Arjun Raghuraman, Sachit Goyal, Phillip S. Athey, Harshad M. Shah, Juan Carlos Medina, William A. Koonce
  • Publication number: 20240392068
    Abstract: Alkylene oxides are polymerized in the presence of a catalyst system that includes a double metal cyanide catalyst that is modified with certain metal or semi-metal compounds. At least one additive is present. The additive is an alkali metal, ammonium or quaternary ammonium salt of a monocarboxylic acid having up to 24 carbon atoms; monobasic potassium phosphate, a monobasic ammonium or quaternary ammonium phosphate, a dibasic ammonium and quaternary ammonium phosphate or phosphoric acid.
    Type: Application
    Filed: September 30, 2022
    Publication date: November 28, 2024
    Inventors: David Keith Steelman, Nima Nikbin, Arjun Raghuraman, Robin P. Ziebarth, John W. Weston, Jean-Paul Masy
  • Patent number: 12071505
    Abstract: Polyurethanes are made in a one-shot process from one or more polyols having a hydroxyl equivalent weight of at least 350, wherein at least 50% of the weight of iii) is a hydroxyl-containing polymer of propylene oxide, the hydroxyl-containing polymer of propylene oxide having a hydroxyl equivalent weight of at least 350, an average of 1.8 to 3 hydroxyl groups per molecule of which hydroxyl groups 40 to 70% are primary hydroxyl groups, an oxyethylene content of no greater than 10% by weight based on the weight of the polymer and a polydispersity of 1.175 or less. The polyurethanes exhibit excellent mechanical properties, are highly hygroscopic and cured rapidly.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: August 27, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kshitish A. Patankar, Arjun Raghuraman, Thomas P. Willumstad, Mark F. Sonnenschein, Jody Henning, Heather A. Spinney, David R. Wilson, Sukrit Mukhopadhyay, William H. Heath
  • Publication number: 20240279536
    Abstract: A coated article comprises an article, and one or more amide based coatings on an outer surface of the proppant particle, the amide based coating include the reaction product of an isocyanate component that includes at least one isocyanate and a carboxylic acid component that includes one or more poly-carboxylic acids.
    Type: Application
    Filed: May 24, 2017
    Publication date: August 22, 2024
    Inventors: Arjun Raghuraman, Sachit Goyal, Phillip S. Athey, Harshad M. Shah, Juan Carlos Medina, William A. Koonce
  • Patent number: 11993675
    Abstract: A method of producing a polyether alcohol that includes feeding an initiator into a reactor, feeding one or more monomers into the reactor, feeding a polymerization catalyst into the reactor, the polymerization catalyst being a Lewis acid catalyst having a general formula M(R1)1(R2)1(R3)1(R4)0 or 1, separate from feeding the initiator into the reactor, feeding a hydrogen bond acceptor additive into the reactor, the hydrogen bond acceptor additive being a C2 to C20 organic molecule having at least two hydroxyl groups, of which two hydroxyl groups are situated in 1,2-, 1,3-, or 1,4-positions on the organic molecule, and allowing the initiator to react with the one or more monomers in the presence of the polymerization catalyst and the hydrogen bond acceptor additive to form a polyether alcohol having a number average molecular weight greater than a number average molecular weight of the initiator.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: May 28, 2024
    Assignees: Dow Global Technologies LLC, Northwestern University
    Inventors: Mihir Bhagat, Charmaine Bennett, Youlong Zhu, SonBinh T. Nguyen, Linda Broadbelt, Justin M. Notestein, Matthew E. Belowich, Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Patent number: 11970574
    Abstract: A method of producing an alcohol ethoxylate surfactant or lubricant, the method including reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, the low molecular weight initiator having a nominal hydroxyl functionality at least 1, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R1)I(R2)I(R3)I(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a first fluoroalkyl-substituted phenyl group, R2 includes a second fluoroalkyl-substituted phenyl group or a first fluoro/chloro-substituted phenyl group, R3 includes a third fluoroalkyl-substituted phenyl group or a second fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: April 30, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Arjun Raghuraman, William H. Heath, Bruce D. Hook, Wanglin Yu, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Patent number: 11958936
    Abstract: A method of producing a polyether polyol includes reacting a low molecular weight initiator with one or more monomers in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality of at least 2. The one or more monomers includes at least one selected from propylene oxide and butylene oxide. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 incudes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: April 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Anthony P. Gies, Manjiri R. Paradkar
  • Patent number: 11912822
    Abstract: A method of producing a polyether polyol includes reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality at least 2. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 incudes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: February 27, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Publication number: 20230312803
    Abstract: Embodiments relate to a coating, adhesive, sealant, elastomer, or reaction injection molded material forming polyurethane composition that comprises an isocyanate component that includes at least one isocyanate-terminated prepolymer, and an isocyanate reactive component that includes at least one Lewis acid catalyst polymerized polyether polyol having a weight average molecular weight from 200 g/mol to 1,000 g/mol, an average primary hydroxyl group content of at least 30%, and an average acetal content of at least 0.05 wt %.
    Type: Application
    Filed: October 19, 2021
    Publication date: October 5, 2023
    Inventors: Masayuki Suzuki, Arjun Raghuraman, John W. Weston, An Kaga, Richard J. Keaton, Adrian J. Birch, Maria Jose Cotanda Santapau
  • Patent number: 11667830
    Abstract: A continuous process for forming a coated proppant, said process comprising the steps of: (a) washing particles, (b) drying the particles at a first predetermined temperature, (c) cooling the particles, (d) feeding the cooled particles with a second predetermined temperature lower than the first predetermined temperature to an inlet of a combined continuous mixer and conveyor unit, (e) feeding a coating composition into the combined continuous mixer and conveyor unit, (f) mixing and simultaneously conveying the particles and the coating composition for a predetermined time, (g) curing the coating composition by transfer of heat from the particles, (h) discharging the coated particles from an outlet of the combined continuous mixer and conveyor unit, wherein said process does not comprise a step of heating the particles after the drying.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: June 6, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Praveen Agarwal, Arjun Raghuraman, Juan Carlos Medina
  • Publication number: 20230151156
    Abstract: A polyfunctional organohydrogensiloxane is prepared using a fluorinated triarylborane Lewis acid as catalyst. The polyfunctional organohydrogensiloxane may be formulated into release coating compositions. Alternatively, the polyfunctional organohydrogensiloxane may be further functionalized with a curable group to form a clustered functional organosiloxane. The clustered functional organosiloxane may be formulated into thermal radical cure adhesive compositions.
    Type: Application
    Filed: June 16, 2021
    Publication date: May 18, 2023
    Inventors: Marc-Andre Courtemanche, Anne-Catherine Bedard, Heather Spinney, David Wilson, Arjun Raghuraman, Sukrit Mukhopadhyay, Travis Sunderland
  • Publication number: 20230151157
    Abstract: A composition and method can be used in the preparation of various siloxanes. The composition and method employ a fluorinated triarylborane Lewis acid, a hydrocarbonoxy-functional organosilicon compound, and a silyl hydride. The fluorinated triarylborane Lewis acid catalyzes reaction of a hydrocarbonoxy moiety (from the organosilicon compound) and a silicon-bonded hydrogen atom (from the silyl hydride) to form a siloxane bond.
    Type: Application
    Filed: June 16, 2021
    Publication date: May 18, 2023
    Inventors: Marc-Andre Courtemanche, Anne-Catherine Bédard, Heather Spinney, David Wilson, Arjun Raghuraman, Sukrit Mukhopadhyay, Travis Sunderland
  • Publication number: 20230123215
    Abstract: A composition includes a silyl hydride (having at least one silicon-bonded hydrogen atom per molecule) and a fluorinated triarylborane Lewis acid. In the method, the Lewis acid catalyzes reaction of silicon bonded hydrogen atoms from the silyl hydride and water, thereby forming a siloxane bond in the resulting product. The composition and method can be used to form siloxane intermediates and cured networks.
    Type: Application
    Filed: June 16, 2021
    Publication date: April 20, 2023
    Inventors: Marc-Andre Courtemanche, Anne-Catherine Bedard, Heather Spinney, David Wilson, Arjun Raghuraman, Sukrit Mukhopadhyay, Andrew Shah, David Devore, David Laitar, Jordan Reddel, Shuqi Lai
  • Patent number: 11479642
    Abstract: A method of producing a polyether polyol that includes reacting a low molecular weight initiator with one or more monomers in the presence of a polymerization catalyst, the low molecular weight initiator having a number average molecular weight of less than 1,000 g/mol and a nominal hydroxyl functionality at least 2, the one or more monomers including at least one selected from propylene oxide and butylene oxide, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1. Whereas, M is boron, aluminum, indium, bismuth or erbium, R1, R2, and R3 each includes a same fluoroalkyl-substituted phenyl group, and optional R4 includes a functional group or functional polymer group. The method further includes forming a polyether polyol having a number average molecular weight of greater than the number average molecular weight of the low molecular weight initiator in the presence of the Lewis acid catalyst.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 25, 2022
    Assignees: Dow Global Technologies LLC, Northwestern University
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Anthony P. Gies, Manjiri R. Paradkar, Justin M. Notestein, SonBinh T. Nguyen
  • Publication number: 20220251283
    Abstract: A method of producing a polyether alcohol that includes feeding an initiator into a reactor, feeding one or more monomers into the reactor, feeding a polymerization catalyst into the reactor, the polymerization catalyst being a Lewis acid catalyst having a general formula M(R1)1(R2)1(R3)1(R4)0 or 1, separate from feeding the initiator into the reactor, feeding a hydrogen bond acceptor additive into the reactor, the hydrogen bond acceptor additive being a C2 to C20 organic molecule having at least two hydroxyl groups, of which two hydroxyl groups are situated in 1,2-, 1,3-, or 1,4- positions on the organic molecule, and allowing the initiator to react with the one or more monomers in the presence of the polymerization catalyst and the hydrogen bond acceptor additive to form a polyether alcohol having a number average molecular weight greater than a number average molecular weight of the initiator.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 11, 2022
    Applicants: Dow Global Technologies LLC, Northwestern University, Northwestern University
    Inventors: Mihir Bhagat, Charmaine Bennett, Youlong Zhu, SonBinh T. Nguyen, Linda Broadbelt, Justin M. Notestein, Matthew E. Belowich, Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Publication number: 20220227929
    Abstract: A process for purifying a polyether polyol including treating the polyether polyol with a mixture of: (i) a sulfonic acid catalyst, wherein the catalyst includes a substituted or unsubstituted alkyl group of at least 6 carbon atoms, and (ii) water to reduce residual levels of acetal linkages present in the polyether polyol; a purified polyether polyol prepared using the above treatment process; and a polyurethane product prepared by reacting the above purified polyether polyol and an isocyanate.
    Type: Application
    Filed: July 29, 2020
    Publication date: July 21, 2022
    Inventors: Marinus A. Bigi, Arjun Raghuraman