Patents by Inventor Arkadii V. Samoilov

Arkadii V. Samoilov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9343430
    Abstract: Wafer-level package devices are described that include multiple die packaged into a single wafer-level package device. In an implementation, a wafer-level package device includes a semiconductor device having at least one electrical interconnection formed therein. At least one semiconductor package device is positioned over the first surface of the semiconductor device. The semiconductor package device includes one or more micro-solder bumps. The wafer-level package device further includes an encapsulation structure disposed over and supported by the semiconductor device for encapsulating the semiconductor package device(s). When the semiconductor package device is positioned over the semiconductor device, each micro-solder bump is connected to a respective electrical interconnection that is formed in the semiconductor device.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 17, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Tie Wang, Yi-Sheng Anthony Sun
  • Patent number: 9322901
    Abstract: Optical devices are described that integrate multiple heterogeneous components in a single, compact package. In one or more implementations, the optical devices include a carrier substrate having a surface that includes two or more cavities formed therein. One or more optical component devices are disposed within the respective cavities in a predetermined arrangement. A cover is disposed on the surface of the carrier substrate so that the cover at least substantially encloses the optical component devices within their respective cavities. The cover, which may be glass, is configured to transmit light within the predetermined spectrum of wavelengths.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 26, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Joy T. Jones, Christopher F. Edwards, Arkadii V. Samoilov, Phillip J. Benzel, Richard I. Olsen, Peter R. Harper
  • Publication number: 20160079197
    Abstract: Semiconductor devices are described that have a through-substrate via formed therein. In one or more implementations, the semiconductor devices include a semiconductor wafer and an integrated circuit die bonded together with an adhesive material. The semiconductor wafer and the integrated circuit die include one or more integrated circuits formed therein. The integrated circuits are connected to one or more conductive layers deployed over the surfaces of the semiconductor wafer and an integrated circuit die. A via is formed through the semiconductor wafer and the patterned adhesive material so that an electrical interconnection can be formed between the integrated circuits formed in the semiconductor wafer and the integrated circuits formed in the integrated circuit die. The via includes a conductive material that furnishes the electrical interconnection between the semiconductor wafer and the integrated circuit die.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Xuejun Ying, Arkadii V. Samoilov, Peter McNally, Tyler Parent
  • Publication number: 20160026842
    Abstract: A fingerprint sensor is described that includes a thin protective cover layer on a sensor glass layer with receive circuitry between the thin protective cover layer and the sensor glass layer. In an implementation, a fingerprint sensor assembly includes a controller; a metal layer configured to be electrically coupled to the controller; a transmit layer electrically connected to the metal layer and the controller; a sensor glass layer including at least one through-glass via, where the transmit layer is disposed on a first side of the sensor glass layer, and where the transmit layer is electrically coupled to the at least one through-glass via; a receive layer disposed on a second side of the sensor glass layer, where the receive layer is electrically coupled to the at least one through-glass via; and a protective cover layer disposed on the receive layer.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 28, 2016
    Inventors: Richard S. Withers, Ronald B. Koo, Stephen C. Gerber, Arkadii V. Samoilov, David Johnson
  • Patent number: 9230903
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: January 5, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Publication number: 20150380627
    Abstract: A temperature sensing device and method for fabrication of the temperature sensing device are described that include a second temperature sensor disposed on and/or in the lid assembly. In an implementation, the temperature sensing device includes a substrate, a ceramic structure disposed on the substrate, a thermopile disposed on the substrate, a first temperature sensor disposed on the substrate, and a lid assembly disposed on the ceramic structure, where the lid assembly includes a base layer, a first filter layer disposed on a first side of the base layer, a first metal layer disposed on a second side of the base layer, a passivation layer disposed on the first metal layer, where the passivation layer includes at least one of a second metal layer, a via, a metal plate, or an epoxy ring, and a second temperature sensor disposed on and/or in the passivation layer.
    Type: Application
    Filed: December 23, 2014
    Publication date: December 31, 2015
    Inventors: Arvin Emadi, Nicole D. Kerness, Arkadii V. Samoilov, Cheng-Wei Pei, Jerome C. Bhat, Kumar Nagarajan, Ken Wang
  • Patent number: 9224890
    Abstract: Light sensor devices are described that have a glass substrate, which includes a lens to focus light over a wide variety of angles, bonded to the light sensor device. In one or more implementations, the light sensor devices include a substrate having a photodetector formed therein. The photodetector is capable of detecting light and providing a signal in response thereto. The sensors also include one or more color filters disposed over the photodetector. The color filters are configured to pass light in a limited spectrum of wavelengths to the photodetector. A glass substrate is disposed over the substrate and includes a lens that is configured to collimate light incident on the lens and to pass the collimated light to the color filter.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: December 29, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Patent number: 9224714
    Abstract: Semiconductor devices are described that include a via that extends only partially through the substrate. Through-substrate vias (TSV) furnish electrical interconnectivity to electronic components formed in the substrates. In implementations, the semiconductor devices are fabricated by first bonding a semiconductor wafer to a carrier wafer with an adhesive material. The semiconductor wafer includes an etch stop disposed within the wafer (e.g., between a first surface a second surface of the wafer). One or more vias are formed through the wafer. The vias extend from the second surface to the etch stop.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: December 29, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Tyler Parent, Larry Y. Wang
  • Patent number: 9224884
    Abstract: A light sensor is described that includes a glass substrate having a diffuser formed therein and at least one color filter integrated on-chip (i.e., integrated on the die of the light sensor). In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a semiconductor substrate. At least one photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. The color filter is configured to filter light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to the photodetector. A glass substrate is positioned over the substrate and includes a diffuser. The diffuser is configured to diffuse light incident on the diffuser and to pass the diffused light to the at least one color filter for further filtering.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: December 29, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Publication number: 20150338273
    Abstract: Techniques are provided to furnish a light sensor that includes a filter positioned over a photodetector to filter visible and infrared wavelengths to permit the sensing of ultraviolet (UV) wavelengths. In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a substrate. A photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. In one or more implementations, the substrate comprises a silicon on insulator substrate (SOI). A filter (e.g., absorption filter, interference filter, flat pass filter, McKinlay-Diffey Erythema Action Spectrum-based filter, UVA/UVB filter, and so forth) is disposed over the photodetector. The filter is configured to filter infrared light and visible light from light received by the light sensor to at least substantially block infrared light and visible light from reaching the photodetector.
    Type: Application
    Filed: December 23, 2014
    Publication date: November 26, 2015
    Inventors: Arvin Emadi, Nicole D. Kerness, Cheng-Wei Pei, Joy T. Jones, Arkadii V. Samoilov, Ke-Cai Zeng
  • Patent number: 9196587
    Abstract: Semiconductor devices are described that have a through-substrate via formed therein. In one or more implementations, the semiconductor devices include a semiconductor wafer and an integrated circuit die bonded together with an adhesive material. The semiconductor wafer and the integrated circuit die include one or more integrated circuits formed therein. The integrated circuits are connected to one or more conductive layers deployed over the surfaces of the semiconductor wafer and an integrated circuit die. A via is formed through the semiconductor wafer and the patterned adhesive material so that an electrical interconnection can be formed between the integrated circuits formed in the semiconductor wafer and the integrated circuits formed in the integrated circuit die. The via includes a conductive material that furnishes the electrical interconnection between the semiconductor wafer and the integrated circuit die.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 24, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Xuejun Ying, Arkadii V. Samoilov, Peter McNally, Tyler Parent
  • Publication number: 20150325512
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Patent number: 9159684
    Abstract: A wafer-level packaged semiconductor device is described. In an implementation, the device includes one or more self-assembled resilient leads disposed on an integrated circuit chip. Each of the resilient leads are configured to move from a first position wherein the resilient lead is held adjacent to the chip and a second position wherein the resilient lead is extended away from the chip to interconnect the chip to a printed circuit board. A guard is provided to protect the resilient leads when the resilient leads are in the first position. One or more attachment bumps may also be furnished to facilitate attachment of the device to the printed circuit board.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: October 13, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Chiung C. Lo, Arkadii V. Samoilov, Reynante Alvarado
  • Publication number: 20150279799
    Abstract: A wafer level package, electronic device including the wafer level package, and fabrication methods are described that include forming a cantilever pillar design as a portion of the wafer level package and/or a segmented solder connection for preventing and reducing connection stress and increasing board level reliability. In implementations, the wafer level device that employs example techniques in accordance with the present disclosure includes at least a section of a processed semiconductor wafer including at least one integrated circuit die, a first dielectric layer disposed on the processed semiconductor wafer, a first pillar, a second pillar formed on the first pillar, a second dielectric layer formed on the first dielectric layer and surrounding a portion of the first pillar and the second pillar, and at least one solder ball disposed on the second pillar.
    Type: Application
    Filed: September 22, 2014
    Publication date: October 1, 2015
    Inventors: Karthik Thambidurai, Peter R. Harper, Sriram Muthukumar, Arkadii V. Samoilov
  • Publication number: 20150255413
    Abstract: A wafer level package device, electronic device, and fabrication methods for fabrication of the wafer level package device are described that include forming an exposed lead tip on the wafer level package for providing a solder buttress structure when coupling the wafer level package device to another electrical component. In implementations, the wafer level package device includes at least one integrated circuit die, a metal pad, a first dielectric layer, a redistribution layer, a second dielectric layer, a pillar structure, a molding layer, a pillar layer, and a plating layer, where the pillar layer is sawn to form pad contacts on at least two sides of the wafer level package device. The exposed pad contact facilitate a solder fillet and buttress structure resulting in improved board level reliability.
    Type: Application
    Filed: September 25, 2014
    Publication date: September 10, 2015
    Inventors: Peter R. Harper, Martin Mason, Arkadii V. Samoilov
  • Patent number: 9105750
    Abstract: Semiconductor devices are described that have a through-substrate via formed therein. In one or more implementations, the semiconductor devices include a top wafer and a bottom wafer bonded together with a patterned adhesive material. The top wafer and the bottom wafer include one or more integrated circuits formed therein. The integrated circuits are connected to one or more conductive layers deployed over the surfaces of the top and bottom wafers. A via is formed through the top wafer and the patterned adhesive material so that an electrical interconnection can be formed between the integrated circuits formed in the top wafer and the integrated circuits formed in the bottom wafer. The via includes a conductive material that furnishes the electrical interconnection between the top and bottom wafers.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: August 11, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Tyler Parent, Xuejun Ying
  • Patent number: 9093333
    Abstract: Semiconductor devices are described that have an extended under ball metallization configured to mitigate dielectric layer cracking due to stress, particularly stress caused by CTE mismatch during thermal cycling tests, dynamic deformation during drop tests, or cyclic bending tests, and so on. In an implementation, the semiconductor package devices include an integrated circuit chip having a solder ball and under ball metallization, formed on the integrated circuit chip, which is configured to receive the solder ball so that the solder ball and the under ball metallization have a contact area there between, wherein the area of the under ball metallization is area greater than the contact area.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: July 28, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Yong L. Xu, Duane T. Wilcoxen, Yi-Sheng A. Sun, Viren Khandekar, Arkadii V. Samoilov
  • Patent number: 9087732
    Abstract: Wafer-level package (semiconductor) devices are described that have a pillar structure that extends at least partially into a solder bump to mitigate thermal stresses to the solder bump. In implementations, the wafer-level package device may comprise an integrated circuit chip having a surface and a solder bump disposed over the surface. The wafer-level package device may also include a pillar structure disposed over the surface that extends at least partially into the solder bump.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 21, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Yong L. Xu, Viren Khandekar, Yi-Sheng A. Sun, Arkadii V. Samoilov
  • Patent number: 9087779
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: July 21, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Publication number: 20150109785
    Abstract: A wafer level optical device, system, and method are described that include a substrate, an electronic device disposed on the substrate, an illumination source disposed on the electronic device, an enclosure disposed on the substrate, where the enclosure includes at least one optical surface and covers the electronic device and the illumination source, and at least one solder ball disposed on a side of the substrate distal from the electronic device. In implementations, a process for using the wafer level optical device and lens-integrated package system that employ the techniques of the present disclosure includes receiving a substrate, placing an electronic device on the substrate, placing an illumination source on the electronic device, and placing an enclosure on the substrate, where the enclosure covers the electronic device and the illumination source, and the enclosure and a wall structure form a first compartment and a second compartment.
    Type: Application
    Filed: May 14, 2014
    Publication date: April 23, 2015
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Jerome C. Bhat, Anand Chamakura, Kumar Nagarajan, Christopher F. Edwards