Patents by Inventor Arkadiy Lyakh

Arkadiy Lyakh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10355449
    Abstract: A QCL may include a substrate, an emitting facet, and semiconductor layers adjacent the substrate and defining an active region. The active region may have a longitudinal axis canted at an oblique angle to the emitting facet of the substrate. The QCL may include an optical grating being adjacent the active region and configured to emit one of a CW laser output or a pulsed laser output through the emitting facet of substrate.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 16, 2019
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Arkadiy Lyakh
  • Publication number: 20190207360
    Abstract: A semiconductor laser tuned with an acousto-optic modulator. The acousto-optic modulator may generate standing waves or traveling waves. When traveling waves are used, a second acousto-optic modulator may be used in a reverse orientation to cancel out a chirp created in the first acousto-optic modulator. The acousto-optic modulator may be used with standing-wave laser resonators or ring lasers.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: C. Kumar N. Patel, Arkadiy Lyakh
  • Publication number: 20190199066
    Abstract: A QCL may include a substrate, and a sequence of semiconductor epitaxial layers adjacent the substrate and defining an active region, an injector region adjacent the active region, and a waveguide optically coupled to the active region. The active region may include stages, each stage having an upper laser level and a lower laser level defining respective first and second wavefunctions. The upper laser level may have an upper laser level average coordinate, and the lower laser level may have a lower laser level average coordinate. The upper laser level average coordinate and the lower laser level average coordinate may have spacing of less than 10 nm. Wave functions for all active region energy levels located below the lower laser level may have greater than 10% overlap with the injector region.
    Type: Application
    Filed: September 20, 2018
    Publication date: June 27, 2019
    Inventors: ARKADIY LYAKH, MATTHEW SUTTINGER
  • Publication number: 20190115727
    Abstract: A QCL may include a substrate, and a semiconductor layer adjacent the substrate and defining an active region. The active region may have an elongate shape extending laterally across the substrate and having a number of stages greater than 25, each stage having a thickness less than 40 nanometers. The active region may have a ridge width greater than 15 ?m.
    Type: Application
    Filed: July 9, 2018
    Publication date: April 18, 2019
    Inventors: ARKADIY LYAKH, MATTHEW SUTTINGER
  • Patent number: 10230210
    Abstract: A semiconductor laser tuned with an acousto-optic modulator. The acousto-optic modulator may generate standing waves or traveling waves. When traveling waves are used, a second acousto-optic modulator may be used in a reverse orientation to cancel out a chirp created in the first acousto-optic modulator. The acousto-optic modulator may be used with standing-wave laser resonators or ring lasers.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: March 12, 2019
    Assignee: PRANALYTICA, INC.
    Inventors: C. Kumar N. Patel, Arkadiy Lyakh
  • Patent number: 10177535
    Abstract: A quantum cascade laser may include a substrate, and a semiconductor layer adjacent the substrate and defining an active region. The active region may have an elongate shape extending laterally across the substrate and having first and second lowest injector states with an energy spacing greater than 20 meV. In some embodiments, the active region may have a thickness less than or equal to 1.3 ?m and a length greater than or equal to 20 ?m. The quantum cascade laser may also include an optical grating adjacent the active region and configured to emit a continuous wave laser output through the substrate. The optical grating may include a curved grating pattern.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: January 8, 2019
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Arkadiy Lyakh
  • Publication number: 20180254603
    Abstract: A semiconductor laser tuned with an acousto-optic modulator. The acousto-optic modulator may generate standing waves or traveling waves. When traveling waves are used, a second acousto-optic modulator may be used in a reverse orientation to cancel out a chirp created in the first acousto-optic modulator. The acousto-optic modulator may be used with standing-wave laser resonators or ring lasers.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 6, 2018
    Inventors: C. Kumar N. Patel, Arkadiy Lyakh
  • Patent number: 10020635
    Abstract: A spectrometer device may include a first QCL configured to operate in a frequency comb mode with spectrally equidistant modes with stable relative phase, a power supply coupled to the first QCL, and a controller coupled to the power supply. The first QCL may include different active region layers based on a vertical transition. The first QCL may be configured to provide a comb output having a cumulative flat gain profile and reduced dispersion refractive index profile in a broad range of driving conditions. The spectrometer device may include a sample cell configured to receive the comb output.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: July 10, 2018
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Arkadiy Lyakh
  • Publication number: 20180048118
    Abstract: A QCL may include a substrate, an emitting facet, and semiconductor layers adjacent the substrate and defining an active region. The active region may have a longitudinal axis canted at an oblique angle to the emitting facet of the substrate. The QCL may include an optical grating being adjacent the active region and configured to emit one of a CW laser output or a pulsed laser output through the emitting facet of substrate.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 15, 2018
    Inventor: Arkadiy Lyakh
  • Patent number: 9608408
    Abstract: An improved longwave infrared quantum cascade laser. The improvement includes a strained InxGa1-xAs/AlyIn1-yAs composition, with x and y each between 0.53 and 1, an active region emitting at a wavelength equal to or greater than 8 ?m, an energy spacing E54 equal to or greater than 50 meV, an energy spacing EC4 equal to or greater than 250 meV, and an optical waveguide with a cladding layer on each side of the active region. Each cladding layer has a doping level of about 2·1016 cm?3. The optical waveguide also has a top InP layer with a doping level of about 5·1016 cm?3 and a bottom InP layer with a doping level of about 5?1016 cm?3. Additionally, the optical waveguide has a plasmon layer with a doping level of about 8·1018 cm?3.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: March 28, 2017
    Assignee: PRANALYTICA, INC.
    Inventors: Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, C. Kumar N. Patel
  • Publication number: 20160322788
    Abstract: An improved longwave infrared quantum cascade laser. The improvement includes a strained composition, with x and y each between 0.53 and 1, an active region emitting at a wavelength equal to or greater than 8 ?m, an energy spacing E54 equal to or greater than 50 meV, an energy spacing EC4 equal to or greater than 250 meV, and an optical waveguide with a cladding layer on each side of the active region. Each cladding layer has a doping level of about 2·1016 cm?3. The optical waveguide also has a top InP layer with a doping level of about 5·1016 cm?3 and a bottom InP layer with a doping level of about 5?1016 cm?3. Additionally, the optical waveguide has a plasmon layer with a doping level of about 8·1018 cm?3.
    Type: Application
    Filed: September 26, 2013
    Publication date: November 3, 2016
    Applicant: Pranalytica, Inc.
    Inventors: Alexei Tsekoun, C. Kumar N. Patel, Richard Maulini, Arkadiy Lyakh
  • Patent number: 9077153
    Abstract: An improved quantum cascade laser, the improvement comprising a longitudinally non-uniform dielectric waveguide. The waveguide includes a longitudinally straight section and a longitudinally tapered section. The length of the tapered section is between 5% and 50% of the total cavity length. The tapered section tapers at a taper angle from the facet width to the ridge width. The taper angle is smaller than the delineation angle of the waveguide.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 7, 2015
    Inventors: Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, C. Kumar N. Patel
  • Publication number: 20130010823
    Abstract: A quantum cascade laser having a lower laser level backfilling given by an equation that accounts for the degeneracy of energy states due to the presence of multiple subbands. For mid-infrared quantum cascade lasers at room temperature and a typical number of injector subbands, the voltage defect is between 90 meV and 110 meV at a current density of 80% of the rollover current density.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Inventors: Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, C. Kumar N. Patel
  • Patent number: 8121164
    Abstract: A quantum cascade laser (QCL) having a bias-neutral design and a semiconductor with multiple layers of AlxIn1-xAs/InyGa1-yAs. The first active region barrier has a thickness of less than fourteen angstroms, and the second active region barrier has a thickness of less than eleven angstroms. The lower active region wavefunction overlaps with each of the injector level wavefunctions. Also, the laser transition is vertical at a bias close to roll-over. The injector level 3? is above a lower laser level 3, the injector level 2? is below the lower laser level 3, and the active region level 2 is confined to the active region. The lower laser level 3 is separated from the active region level 2 by the energy of the LO phonon. The remaining active region states and the remaining injector states are either above the lower laser level 3 or significantly below the active region level 2.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 21, 2012
    Assignee: Pranalytica, Inc.
    Inventors: Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, C. Kumar N. Patel
  • Patent number: 8068524
    Abstract: A submount for a semiconductor laser. The submount has a layer of silicon carbide (SiC) and a layer of aluminum nitride (AlN) deposited on the layer of SiC. The submount is bonded to the InP-based laser by a hard solder applied to the AlN layer. Preferably, the thickness of the AlN layer is ten to twenty microns, the thickness of the SiC layer is two hundred fifty microns, and the solder is a gold-tin (AuSn) eutectic. The semiconductor laser may be a quantum cascade laser (QCL). Similar combinations of submount materials can be found for other semiconductor laser material systems and types.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 29, 2011
    Assignee: Pranalytica, Inc.
    Inventors: C. Kumar N. Patel, Arkadiy Lyakh, Alexei Tsekoun, Richard Maulini
  • Patent number: 8014430
    Abstract: A quantum cascade laser utilizing non-resonant extraction design having a multilayered semiconductor with a single type of carrier; at least two final levels (1 and 1?) for a transition down from level 2; an energy spacing E21 greater than ELO; an energy spacing E31 of about 100 meV; and an energy spacing E32 about equal to ELO. The carrier wave function for level 1 overlaps with the carrier wave function for level 2. Likewise, the carrier wave function for level 1? overlaps with the carrier wave function for level 2. In a second version, the basic design also has an energy spacing E54 of about 90 meV, and levels 1 and 1? do not have to be spatially close to each other, provided that level 2 has significant overlap with both these levels. In a third version, there are at least three final levels (1, 1?, and 1?) for a transition down from level 2. Each of the levels 1, 1?, and 1? has a non-uniform squared wave function distribution.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: September 6, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: C. Kumar N. Patel, Alexei Tsekoun, Richard Maulini, Arkadiy Lyakh, Christian Pflugl, Laurent Diehl, Qijie Wang, Federico Capasso
  • Publication number: 20090213890
    Abstract: A quantum cascade laser utilizing non-resonant extraction design having a multilayered semiconductor with a single type of carrier; at least two final levels (1 and 1?) for a transition down from level 2; an energy spacing E21 greater than ELO; an energy spacing E31 of about 100 meV; and an energy spacing E32 about equal to ELO. The carrier wave function for level 1 overlaps with the carrier wave function for level 2. Likewise, the carrier wave function for level 1? overlaps with the carrier wave function for level 2. In a second version, the basic design also has an energy spacing E54 of about 90 meV, and levels 1 and 1? do not have to be spatially close to each other, provided that level 2 has significant overlap with both these levels. In a third version, there are at least three final levels (1, 1?, and 1?) for a transition down from level 2. Each of the levels 1, 1?, and 1? has a non-uniform squared wave function distribution.
    Type: Application
    Filed: February 27, 2009
    Publication date: August 27, 2009
    Inventors: C. Kumar N. Patel, Alexei Tsekoun, Richard Maulini, Arkadiy Lyakh, Christian Pflugl, Laurent Diehl, Qije Wang, Federico Capasso