Patents by Inventor Arkady Bablumyan

Arkady Bablumyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947314
    Abstract: VHOEs with expanded acceptance angle ranges are described as well as various systems and methods for fabricating VHOEs with expanded acceptance angle ranges. The VHOE with expanded acceptance angle range may include two or more individual Bragg gratings. The two or more individual Bragg gratings have the same diffraction geometry but with shifted Bragg conditions. Having the same diffraction geometry means when light is incident on the VHOE including two or more individual Bragg gratings, the diffracted light from each of the Bragg gratings is co-linear or overlapping with the diffracted light from the other Bragg gratings. The Bragg condition for each of the Bragg gratings are shifted with respect to each neighboring Bragg grating by an amount up to the acceptance angle range of each individual Bragg grating.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: April 2, 2024
    Assignee: A9.com, Inc.
    Inventor: Arkady Bablumyan
  • Patent number: 11789265
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked waveguides, each having top and bottom substrates. The combiner also uses multiple pairs of incoupling and outcoupling VHOEs, which are sandwiched between the top and bottom substrates, to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: October 17, 2023
    Assignee: A9.com, Inc.
    Inventor: Arkady Bablumyan
  • Patent number: 11698492
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked substrates and multiple pairs of incoupling and outcoupling VHOEs to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 11, 2023
    Assignee: A9.com, Inc.
    Inventors: Arkady Bablumyan, Lloyd J LaComb, Jr.
  • Patent number: 11668935
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked substrates and multiple pairs of incoupling and outcouping VHOEs to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 6, 2023
    Assignee: A9.com, Inc.
    Inventors: Arkady Bablumyan, Erfan Fard
  • Publication number: 20220373971
    Abstract: The present invention features new waveguide layouts for input, redirection (expansion), and output holograms that minimize cross talk between colors and allow all three colors to reside in a single waveguide. The use of multiple incoupling holograms that diffract different colors of light in different directions, or along different paths, through a waveguide substrate advantageously provides for a reduction of cross-talk between the colors of a holographic image. In a square-shaped design, red, green, and blue input and output holograms approximately overlay on top of each other. The green redirection hologram is laterally separated from the red and blue redirection holograms. Using this square-shape design, the light beams for the three colors are separated into two paths propagating from input to output holograms.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Inventors: Arkady Bablumyan, Chen Liang
  • Publication number: 20220187765
    Abstract: The present invention features VHOEs with expanded acceptance angle ranges as well as various systems and methods for fabricating VHOEs with expanded acceptance angle ranges. The VHOE with expanded acceptance angle range may include two or more individual Bragg gratings. In preferred embodiments, the two or more individual Bragg gratings have the same diffraction geometry but with shifted Bragg conditions. Having the same diffraction geometry means when light is incident on the VHOE including two or more individual Bragg gratings, the diffracted light from each of the Bragg gratings is co-linear or overlapping with the diffracted light from the other Bragg gratings. The Bragg condition for each of the Bragg gratings are shifted with respect to each neighboring Bragg grating by an amount up to the acceptance angle range of each individual Bragg grating.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Inventor: Arkady Bablumyan
  • Publication number: 20210080907
    Abstract: Reflection mode VHOEs are designed and fabricated for use in imaging and other applications that require high diffraction efficiency with minimal chromatic aberrations and astigmatism across the bandwidth. A single VHOE acts as a mirror to reflect light (0th diffraction order) at the specified wavelength(s) and bandwidth with a principal ray at an angle equal to an angle of incidence of broadband light. A composite VHOE includes a complementary pair of input and output VHOEs each configured to diffract light into a non-zero Nth order. The input and output VHOEs are positioned in parallel to and offset from each other such that the filtered Nth order beam exits the composite lens on a path at the angle of incidence and parallel to the broadband light while suppressing the unwanted 0th order beam. The composite lens improves suppression of unwanted wavelengths while still achieving minimal chromatic aberration.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventors: Arkady Bablumyan, Lloyd J. LaComb, JR., Nasser N. Peyghambarian
  • Publication number: 20200409145
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked waveguides, each having top and bottom substrates. The combiner also uses multiple pairs of incoupling and outcoupling VHOEs, which are sandwiched between the top and bottom substrates, to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Inventor: Arkady Bablumyan
  • Patent number: 10871601
    Abstract: Transmission and reflection mode VHOEs are designed and fabricated for use in imaging and other applications. These VHOE provide high diffraction efficiency with minimal chromatic aberrations and astigmatism across the bandwidth. The lens provides optical power within the bandwidth centered relative to several wavelengths to magnify (focus or collimate) input light and is transparent for the rest of the image spectrum. In transmission mode, two VHOE are fabricated in such a way as to introduce compensating adjustments that minimize the astigmatism and chromatic aberrations introduced by the bandwidth of the input light. Two VHOEs are required to provide an on-axis imaging system to magnify light to form an image and reduce the chromatic aberrations across the bandwidth and reduce the astigmatism while maintaining high diffraction efficiency (DE).
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 22, 2020
    Assignee: TIPD, LLC
    Inventors: Arkady Bablumyan, Lloyd J. LaComb, Jr., Nasser N. Peyghambarian
  • Patent number: 10859833
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple pairs of overlapping incoupling and outcoupling VHOEs to expand the horizontal FOV and a Y expander to expand the vertical FOV. This suitably provides an expanded horizontal and vertical FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????30 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 8, 2020
    Assignee: TIPD, LLC
    Inventor: Arkady Bablumyan
  • Publication number: 20200341280
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked substrates and multiple pairs of incoupling and outcouping VHOEs to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 29, 2020
    Inventors: Arkady Bablumyan, Erfan Fard
  • Publication number: 20200225416
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple stacked substrates and multiple pairs of incoupling and outcoupling VHOEs to expand a first FOV and an image expander to expand the second or perpendicular FOV. This suitably provides an expanded FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????40 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Arkady Bablumyan, Lloyd J. LaComb, JR.
  • Publication number: 20190056593
    Abstract: A waveguide image combiner is used to transmit a monochrome or full-color image in an augmented reality display. The combiner uses multiple pairs of overlapping incoupling and outcoupling VHOEs to expand the horizontal FOV and a Y expander to expand the vertical FOV. This suitably provides an expanded horizontal and vertical FOV that offers a diagonal FOV?50°, a horizontal FOV?40 and a vertical FOV?25°. The combiner also delivers a large horizontal eye box up to 20 mm and a vertical eye box of 10 mm while maintaining high light efficiency of the real scene (e.g. >80%). The system is able to use a light engine based on broadband (10 nm????30 nm) LEDs and maintain a large horizontal field of view and high transmission of the real imagery. The approach resolves issues with current embodiments including astigmatism, image overlap, color balance, and small light engine pupils leading to reduced eye boxes.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 21, 2019
    Inventor: Arkady Bablumyan
  • Publication number: 20180138346
    Abstract: Described herein are transparent solar energy collection systems that comprise at least one holographic optical element, a transparent waveguide concentrator, and at least one solar energy conversion device.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 17, 2018
    Inventors: Sergey Simavoryan, Peng Wang, Weiping Lin, Hongxi Zhang, Michiharu Yamamoto, Isama Kitahara, Sheng Li, Lloyd LaComb, Arkady Bablumyan, Richard J. Rankin, Nasser Peyghambarian, Armen Ordyan
  • Publication number: 20180095212
    Abstract: Transmission and reflection mode VHOEs are designed and fabricated for use in imaging and other applications. These VHOE provide high diffraction efficiency with minimal chromatic aberrations and astigmatism across the bandwidth. The lens provides optical power within the bandwidth centered relative to several wavelengths to magnify (focus or collimate) input light and is transparent for the rest of the image spectrum. In transmission mode, two VHOE are fabricated in such a way as to introduce compensating adjustments that minimize the astigmatism and chromatic aberrations introduced by the bandwidth of the input light. Two VHOEs are required to provide an on-axis imaging system to magnify light to form an image and reduce the chromatic aberrations across the bandwidth and reduce the astigmatism while maintaining high diffraction efficiency (DE).
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Inventors: Arkady Bablumyan, Lloyd J. LaComb, JR., Nasser N. Peyghambarian
  • Publication number: 20160276514
    Abstract: Described herein are transparent solar energy collection systems that comprise at least one holographic optical element, a transparent waveguide concentrator, and at least one solar energy conversion device.
    Type: Application
    Filed: November 12, 2014
    Publication date: September 22, 2016
    Inventors: Sergey Simavoryan, Peng Wang, Weiping Lin, Hongxi Zhang, Michiharu Yamamoto, Isama Kitahara, Sheng Li, Lloyd LaComb, Arkady Bablumyan, Richard J. Rankin, Nasser Peyghambarian, Armen Ordyan
  • Patent number: 8634119
    Abstract: The present invention provides systems of recording holograms that reduce the writing time, increase the diffraction efficiency, improve the resolution, or restitute color. These systems are well suited for use with an updateable 3D holographic display using integral holography and photorefractive polymer.
    Type: Grant
    Filed: March 6, 2011
    Date of Patent: January 21, 2014
    Assignee: TIPD, LLC
    Inventors: Arkady Bablumyan, Pierre-Alexandre Jean Blanche, Nasser N. Peyghambarian
  • Patent number: 8334889
    Abstract: A holographic direct-view display system uses holographic integral imaging techniques that is an auto stereoscopic way to reproduce parallax and occlusion. The display is not resolution limited and is scalable to display life size images if desired. The system can be used to transmit 3D depictions of a scene at video and sub-video rates as well as other information, such as images of documents or computer generated images. The images may be captured, transmitted and displayed in real-time (or near real-time) for telepresence or stored for time-shifted display. The system combines integral holography, a pulsed laser to record the hologram at high speed and a dynamic refreshable holographic material such as a photorefractive polymer as a recording media. The system uses techniques to write, read and erase the updateable hologram that allow the holographic material, hence direct-view display to remain stationary throughout each of the processes for continuous presentation of the hologram to the audience.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: December 18, 2012
    Assignees: TIPD, LLC, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Pierre-Alexandre Jean Blanche, Arkady Bablumyan, Nasser N. Peyghambarian
  • Patent number: 8325402
    Abstract: A system and method that synchronizes a spatial light modulator (SLM) with a pulsed laser to record a hologram at the repetition rate of the pulsed laser for applications including holographic displays and data storage. The color channel capability of a SLM is utilized to effectively increase the write throughput when the pulsed laser repetition rate LR exceeds the SLM's image refresh rate R. The hogels are encoded on the color channels and concatenated to form a sequence of color images such that the write throughput is equal to the repetition rate LR up to a maximum of N*R. This effectively extends the capability and continued viability of existing inexpensive SLMs.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: December 4, 2012
    Assignees: TIPD, LLC, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Pierre-Alexandre Jean Blanche, Arkady Bablumyan, Nasser N. Peyghambarian
  • Publication number: 20120008482
    Abstract: The present invention provides systems of recording holograms that reduce the writing time, increase the diffraction efficiency, improve the resolution, or restitute color. These systems are well suited for use with an updateable 3D holographic display using integral holography and photorefractive polymer.
    Type: Application
    Filed: March 6, 2011
    Publication date: January 12, 2012
    Inventors: Arkady Bablumyan, Pierre-Alexandre Jean Blanche, Nasser N. Peyghambarian