Patents by Inventor Arnaud Magrez

Arnaud Magrez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10569248
    Abstract: The invention relates to titanium oxide aerogels, in particular to titanium oxide binary or ternary (e.g. titanium oxide-carbon) aerogel monoliths possessing ordered meso- and macroporosity. The porous scaffold can be made with or without addition of binders and/or surfactants. The aerogel obtained by this method has a specific surface area greater than 60 m2/g and porosity larger than 60%. The surface area ranges from 60 to 300 m2/g. The porosity can reach as high as 99.6%. The size of the titanium oxide crystals are between 5 nm and 100 nm. The aerogel contains 100% titanium oxide. The composite (binary or ternary) aerogel can be prepared by adding at least 10% carbon in the form of (carbon nanotubes, carbon nanofibers, carbon microfibers, exfoliated graphene, cellulose fibers, polymer fibers, metallic and metal oxide nano and microfibers etc.). The aerogel can be prepared with a predeterminable shape. It can be shaped in a mold having a shape of a cylinder, cube, sheet or sphere.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 25, 2020
    Assignee: Ecole Polytechnique Fédérale de Lausanne (EPFL)
    Inventors: Endre Horváth, László Forró, Arnaud Magrez
  • Publication number: 20160030908
    Abstract: The invention relates to titanium oxide aerogels, in particular to titanium oxide binary or ternary (e.g. titanium oxide-carbon) aerogel monoliths possessing ordered meso- and macroporosity. The porous scaffold can be made with or without addition of binders and/or surfactants. The aerogel obtained by this method has a specific surface area greater than 60 m2/g and porosity larger than 60%. The surface area ranges from 60 to 300 m2/g. The porosity can reach as high as 99.6%. The size of the titanium oxide crystals are between 5 nm and 100 nm. The aerogel contains 100% titanium oxide. The composite (binary or ternary) aerogel can be prepared by adding at least 10% carbon in the form of (carbon nanotubes, carbon nanofibers, carbon microfibers, exfoliated graphene, cellulose fibers, polymer fibers, metallic and metal oxide nano and microfibers etc.). The aerogel can be prepared with a predeterminable shape. It can be shaped in a mold having a shape of a cylinder, cube, sheet or sphere.
    Type: Application
    Filed: March 6, 2014
    Publication date: February 4, 2016
    Inventors: Endre HORVÁTH, László FORRÓ, Arnaud MAGREZ
  • Publication number: 20150050743
    Abstract: The present invention relates to the use of reversible dimerization of methylene blue (MB) for sensing humidity. The invention preferably uses titanate nanowires coated with MB. The self-organizational properties of MB on the surface of this nanostructured material studied by spectroscopic means revealed that the light absorption properties of the MB molecules are humidity dependent. Based on the observed humidity dependent metachromasy, we fabricated a humidity sensor using optical fiber technology which is adapted for medical, industrial or environmental applications. The sensor operates with excellent linearity over the relative humidity (RH) levels ranging from 8 to 98%. The response and recovery time can be reduced to 0.5 s while the device exhibits excellent reproducibility with low hysteresis. These performances allow the implementation of the sensor in a breathing monitoring system. Furthermore, the metachromasy was observed for other dyes.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 19, 2015
    Inventors: Endre Horváth, László Forró, Arnaud Magrez, Primoz Rebernik Ribic
  • Publication number: 20130017374
    Abstract: A composite epoxy resin consisting in a SU-8 epoxy resin, a solvent, with or without photoinitiator and carbon nanotubes in powder. When the resin is combined with the carbon nanotubes, the mechanical, thermal and electrical properties of the nanocomposite are enhanced. That offers a wide range of composites which can be used with different micro-fabrication techniques, such as: lamination, spin-coating, spraying and screening for assembly, interconnect and packaging applications.
    Type: Application
    Filed: November 18, 2010
    Publication date: January 17, 2013
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
    Inventors: Marijana Mionic, Arnaud Magrez, László Forró, Sébastien Maurice Jiguet, Moshe Patrick Judelewicz, Thierry Stora