Patents by Inventor Arno Refke

Arno Refke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190323113
    Abstract: Method for the manufacture of a coating having a columnar structure, preferably a dense structure, in which method a coating material in the form of primary corpuscles is injected with a carrier gas into a thermal process beam. The coating material is transferred into a vapor phase in the process beam and is deposited as a condensate in the form of a columnar coating on a substrate. The primary corpuscles are formed by an agglomerate of particles which are held together by cohesive forces of a connecting medium or by adhesive forces.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Applicant: OERLIKON METCO AG, WOHLEN
    Inventors: Rajiv J. DAMANI, Arno REFKE
  • Publication number: 20190291059
    Abstract: Method for the manufacture of a hydrogen-permeable membrane having a thickness of not greater than 30 ?m. The method includes plasma spraying at least one dense layer on a porous substrate such that during the plasma spraying, one sweep of a process beam deposits material particles over the substrate in a form of individual splats which do not produce a cohesive layer and said material particles include a proton-conducting ceramic material and an electron-conducting metallic component. The plasma spraying is LPPS-TF that utilizes a spraying distance of between 200 mm and 2000 mm, a sprayable powder starting material having a particle size range between 1 and 80 ?m and containing the proton-conducting ceramic material and the electron-conducting metallic component and a process beam dispersing the sprayable powder starting material to a cloud.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Applicant: OERLIKON METCO AG, WOHLEN
    Inventors: Rajiv J. DAMANI, Arno REFKE
  • Patent number: 9562281
    Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: February 7, 2017
    Assignee: OERLIKON METCO AG, WOHLEN
    Inventors: Arno Refke, Gerard Barbezat, Jacobus Cornelis Doesburg
  • Publication number: 20160024634
    Abstract: Method for the manufacture of a coating having a columnar structure, preferably a dense structure, in which method a coating material in the form of primary corpuscles is injected with a carrier gas into a thermal process beam. The coating material is transferred into a vapor phase in the process beam and is deposited as a condensate in the form of a columnar coating on a substrate. The primary corpuscles are formed by an agglomerate of particles which are held together by cohesive forces of a connecting medium or by adhesive forces.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Applicant: OERLIKON METCO AG
    Inventors: Rajiv J. DAMANI, Arno REFKE
  • Publication number: 20140234654
    Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).
    Type: Application
    Filed: January 13, 2014
    Publication date: August 21, 2014
    Applicant: Sulzer Metco AG
    Inventors: Arno Refke, Gerard Barbezat, Jacobus Cornelis Doesburg
  • Patent number: 8628860
    Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: January 14, 2014
    Assignee: Sulzer Metco AG
    Inventors: Arno Refke, Gerard Barbezat, Jacobus Cornelis Doesburg
  • Patent number: 8084100
    Abstract: Using this method, a coating (1) is manufactured on a substrate (2), which forms a surface of a base body. In this method a layer (3) with ceramic coating material is applied to the substrate in a process chamber (6) using a plasma beam (30) and using an LPPS or LPPS-TF process. The substrate contains at least one metal Me. At a set reaction temperature of the substrate and in the presence of oxygen, an oxide, which results reactively with metal M diffused on the surface, is generated as a ceramic intermediate layer (4). The ceramic layer (3) is deposited on this intermediate layer.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: December 27, 2011
    Assignee: Sulzer Metco AG
    Inventors: Arno Refke, Wolfram Beele
  • Patent number: 8001927
    Abstract: The invention relates to a plasma spraying device (1) for spraying a coating (2) onto a substrate (3) by a thermal spray process. Said plasma spraying device (1) includes a plasma torch (4) for heating up a plasma gas (5) in a heating zone (6), wherein the plasma torch (4) includes a nozzle body (7) for forming a plasma gas stream (8), and said plasma torch (4) has an aperture (9) running along a central longitudinal axis (10) through said nozzle body (7). The aperture (9) has an convergent section (11) with an inlet (12) for the plasma gas (5), a throat section (13) including a minimum cross-sectional area of the aperture, and a divergent section (14) with an outlet (15) for the plasma gas stream (8), wherein an introducing duct (16) is provided for introducing a liquid precursor (17) into the plasma gas stream (8). According to the invention a penetration means (18, 161, 181, 182) is provided to penetrate the liquid precursor (17) inside the plasma gas stream (8).
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 23, 2011
    Assignee: Sulzer Metco AG
    Inventors: Jean-Luc Dorier, Christoph Hollenstein, GĂ©rard Barbezat, Arno Refke
  • Patent number: 7678428
    Abstract: A method of forming a thermally insulating layer system on a metallic substrate surface is disclosed.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 16, 2010
    Assignee: Sulzer Metco AG
    Inventors: Gerard Barbezat, Arno Refke, Michael Loch
  • Publication number: 20090252945
    Abstract: For the coating and for the surface treatment of substrates by means of a plasma beam a working chamber (2) with a plasma torch (4) is made available, a plasma beam (5) is produced in that a plasma gas is directed through the plasma torch (4) and is heated in the same by means of electrical gas discharge, electromagnetic induction or microwaves, and the plasma beam (5) is directed onto a substrate (3) introduced into the working chamber, wherein the plasma torch (4) which is made available has a power for the thermal plasma spraying of solid material particles. During the coating and/or the surface treatment, the pressure in the working chamber (2) amounts to between 0.01 and 10 mbar, and at least one reactive component in liquid or gaseous form is injected into the plasma beam (5) in order to coat the surface of a substrate (3) or to treat it.
    Type: Application
    Filed: April 3, 2009
    Publication date: October 8, 2009
    Inventors: Arno Refke, Christoph Hollenstein
  • Publication number: 20090136781
    Abstract: A method for the generation of a functional layer is proposed in which a coating material is sprayed onto a surface of a substrate in the form of a jet of powder by means of a plasma spraying process, wherein the coating material is injected at a low process pressure which is less than 10 000 Pa into a plasma, which defocuses the jet of powder and is melted partly or completely there, wherein a plasma with adequately high specific enthalpy is produced, so that a substantial proportion, amounting to at least 5% by weight of the coating material passes over into the vapour phase and an anisotropically structured layer arises on the substrate, wherein elongate corpuscles, which form an anisotropic microstructure, are aligned standing largely perpendicular to the surface of the substrate and transition regions with little material delimit the corpuscles with respect to one another.
    Type: Application
    Filed: August 14, 2008
    Publication date: May 28, 2009
    Inventors: Rajiv J. Damani, Arno Refke, Konstantin Von Niessen
  • Patent number: 7482035
    Abstract: A method of coating a substrate by thermal application of the coating materials using a plasma jet is disclosed. The properties of the plasma jet are determined by controllable process parameters. The coating material and a process gas mixture are injected into the plasma jet where the coating material is partly or completely evaporated depending on the controllable parameters. The phases of the coating material present in vapor and, optionally, condensed form are at least partly deposited on the substrate. A diagnostic measuring method determines the relative proportion of vapor and/or condensed phase for the coating material transported in the plasma jet. The controllable process parameters are set with respect to desired values using such measured data. Regulation of direct manufacture of the coating, particularly a multi-layer coating system, is carried out with respect to these desired values, which correspond to a predetermined vapor or condensed phase proportion.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 27, 2009
    Assignee: Sulzer Metco AG
    Inventors: Richard K. Schmid, Arno Refke, Gerard Barbezat, David Hawley
  • Publication number: 20080226837
    Abstract: In the method for the manufacture of a coating (10) having a columnar structure, preferably a dense structure, a coating material in the form of primary corpuscles (1) is injected with a carrier gas into a thermal process beam. The coating material is transformed in the process beam into a vapor phase and is deposited as condensate in the form of a columnar coating on a substrate (100). The primary corpuscles are liquid droplets or they are formed in each case by an agglomerate of particles (2) which are held together by cohesive forces of a connecting medium or by adhesive forces. The liquid droplets include a chemical precursor of the coating material in the form of a salt solution and are transformed by thermal action in the process beam into secondary corpuscles containing particles (2). The primary or secondary corpuscles are disintegrated in the process beam by mechanical and thermal interaction.
    Type: Application
    Filed: October 1, 2007
    Publication date: September 18, 2008
    Inventors: Rajiv J. Damani, Arno Refke
  • Publication number: 20080057212
    Abstract: The invention relates to a plasma spraying device (1) for spraying a coating (2) onto a substrate (3) by a thermal spray process. Said plasma spraying device (1) includes a plasma torch (4) for heating up a plasma gas (5) in a heating zone (6), wherein the plasma torch (4) includes a nozzle body (7) for forming a plasma gas stream (8), and said plasma torch (4) having an aperture (9) running along a central longitudinal axis (10) through said nozzle body (7). The aperture (9) has an convergent section (11) with an inlet (12) for the plasma gas (5), a throat section (13) including a minimum cross-sectional area of the aperture, and a divergent section (14) with an outlet (15) for the plasma gas stream (8), wherein an introducing duct (16) is provided for introducing a liquid precursor (17) into the plasma gas stream (8). According to the invention a penetration means (18, 161, 181, 182) is provided to penetrate the liquid precursor (17) inside the plasma gas stream (8).
    Type: Application
    Filed: June 19, 2007
    Publication date: March 6, 2008
    Applicant: Sulzer Metco AG
    Inventors: Jean-Luc Dorier, Christoph Hollenstein, Gerard Barbezat, Arno Refke
  • Publication number: 20070259173
    Abstract: Using this method, a coating (1) is manufactured on a substrate (2), which forms a surface of a base body. In this method a layer (3) with ceramic coating material is applied to the substrate in a process chamber (6) using a plasma beam (30) and using an LPPS or LPPS-TF process. The substrate contains at least one metal Me. At a set reaction temperature of the substrate and in the presence of oxygen an oxide, which results reactively with metal M diffused on the surface, is generated as a ceramic intermediate layer (4). The ceramic layer (3) is deposited on this intermediate layer.
    Type: Application
    Filed: April 30, 2007
    Publication date: November 8, 2007
    Applicant: Sulzer Metco AG
    Inventors: Arno Refke, Wolfram Beele
  • Publication number: 20070116886
    Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).
    Type: Application
    Filed: November 17, 2006
    Publication date: May 24, 2007
    Applicant: Sulzer Metco AG
    Inventors: Arno Refke, Gerard Barbezat, Jacobus Doesburg
  • Publication number: 20050129965
    Abstract: The plasma spraying method is a coating method in which a material to be coated is sprayed onto a surface of a metallic substrate (2) in the form of a powder beam. The coating material is injected at a low process pressure, which is lower than 10,000 Pa, into a plasma defocusing the powder beam and is there partly or fully melted. In this connection, a plasma with sufficiently high specific enthalpy is produced so that a substantial portion, amounting to at least 5% by weight, of the coating material changes into the vapour phase and an anisotropically structured coating (1) is produced on the substrate. An anisotropic structured layer of the coating material is deposited on the substrate. In this coating, elongate particles (10), which form an anisotropic micro-structure, are aligned standing largely perpendicular to the substrate surface and low-material transitional zones (11, 12) bound the particles from one another.
    Type: Application
    Filed: March 18, 2003
    Publication date: June 16, 2005
    Inventors: Gerard Barbezat, Arno Refke, Michael Loch
  • Publication number: 20040234687
    Abstract: In the method for the coating of a substrate (3), a hybrid coating method is carried out with a thermal process jet (2) which makes it possible to combine the properties of a thermal spray method with those of a reactive vapour phase deposition. The properties of the process jet are determined by controllable process parameters, in particular by the parameters of pressure, enthalpy, composition of a process gas mixture (G) and composition and form of application of a coating material (M). The coating material is partly or completely evaporated in dependence on the controllable parameters. The phases of the coating material present in vapour form (23b) and, optionally, in condensed, i.e. solid or liquid form, (23a) are at least partly deposited on the substrate. The relative proportion of vapour and/or of condensed phase for the coating material (23) transported in the process jet is determined by a diagnostic measuring method (D).
    Type: Application
    Filed: April 28, 2004
    Publication date: November 25, 2004
    Applicant: Sulzer Metco AG
    Inventors: Richard K. Schmid, Arno Refke, Gerard Barbezat, David Hawley