Patents by Inventor Arnold Chase

Arnold Chase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10661808
    Abstract: The Dynamic Vehicle Separation System (DVSS) according to the present application allows properly equipped vehicles in traffic to maintain safe and optimal separation distances (i.e., following distances), which are automatically and continually calculated based on numerous criteria. Vehicles are equipped with Dynamic Vehicle Separation Controllers (DVSCs) that communicate with each other to maintain proper separation distances among the vehicles.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: May 26, 2020
    Inventor: Arnold Chase
  • Patent number: 10663308
    Abstract: The present application is directed to an Autonomous Vehicle Enhancement System (AVES) and method for monitoring and managing a virtual or existing fleet of autonomous vehicles in a transportation network and dispatching the autonomous vehicles to users. The AVES includes an AVES Central Operations Center (COC) that communicates with AVES vehicle equipment installed in the autonomous vehicles and AVES applications installed on computing devices accessible by the users. The AVES improves the operating efficiency of a transportation network by monitoring the condition of autonomous vehicles, optimizing the geographical distribution of the autonomous vehicles and optimizing assignment of the autonomous vehicles to users requesting services. The AVES COC monitors and controls the autonomous vehicles via the AVES vehicle equipment. The AVES COC communicates with the users via the AVES applications to provide services to the users.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: May 26, 2020
    Inventors: Arnold Chase, William Chase
  • Publication number: 20200160705
    Abstract: A direct vehicle engagement system, device and method that allows end-users to select a driven or autonomous vehicle from amongst a group of available, unassigned vehicles within a geographical area, and arrange an extemporaneous trip directly with the selected vehicle, eliminating the need for the involvement of a Central Operations Center or third party intermediary in the trip assignment and vehicle engagement processes.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Inventor: Arnold Chase
  • Patent number: 10631753
    Abstract: A blood glucose tracking system and method measures emitted microwave energy transmitted to and accepted by blood vessels in a desired target area of a patient in order to determine, in real time and in vivo, appropriate blood glucose levels. A measurement unit comprises a transmitter operatively connected to an antenna to deliver energy towards appropriate subcutaneous blood vessels. The measurement unit determines an accepted energy power value in the blood vessels associated with the desired target area. This measurement energy power value is compared with a calibration value, and the difference is used to determine a resultant blood glucose value. The determined blood glucose value may further be acclimatized using additional sensed values compensating for biological and ambient factors relevant to the patient. The final determined blood glucose value can be displayed for reading and/or transmitted and stored for recording for further reference.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 28, 2020
    Inventor: Arnold Chase
  • Patent number: 10613545
    Abstract: A passive infra-red guidance system and method for augmenting operation of an autonomous vehicle on a roadway includes at least one forward-looking infra-red imaging sensor mounted on the vehicle in operative communication with an image processor tied into the vehicle's operational system. The system determines the left and right edges of the roadway using thermal imaging, and then determines the centerline of the travel lane in which the vehicle is travelling based on the determined left and right edges of the roadway. The system then compares the determined centerline of the travel lane with the actual position of the vehicle and identifies any adjustment needed for the vehicle's position based on the comparison. The left and right edge determination may comprise identifying a difference between a thermal signature representative of the roadway and a thermal signature representative of a non-roadway portion that is located proximate to the roadway portion.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: April 7, 2020
    Inventor: Arnold Chase
  • Publication number: 20200066159
    Abstract: A passive infra-red pedestrian and animal detection and avoidance system and method for augmenting the operation of a vehicle on a roadway, especially for identifying potential pedestrian/vehicular and/or animal/vehicular collision danger for the vehicle in operation and adjusting the position and operation of the vehicle accordingly, includes at least one passive infra-red sensor array mounted on the vehicle in operative communication with an image processor tied into the operational system of the vehicle. The system detects, using thermal imaging and processing, the presence of people or animals that may be in or laterally crossing into the travel lane of the vehicle.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventor: Arnold Chase
  • Patent number: 10564645
    Abstract: A passive infra-red guidance system and method for augmenting operation of an autonomous vehicle on a roadway includes at least one forward-looking infra-red imaging sensor mounted on the vehicle in operative communication with an image processor tied into the vehicle's operational system. The system determines the left and right edges of the roadway using thermal imaging, and then determines the centerline of the travel lane in which the vehicle is travelling based on the determined left and right edges of the roadway. The system then compares the determined centerline of the travel lane with the actual position of the vehicle and identifies any adjustment needed for the vehicle's position based on the comparison. The left and right edge determination may comprise identifying a difference between a thermal signature representative of the roadway and a thermal signature representative of a non-roadway portion that is located proximate to the roadway portion.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 18, 2020
    Inventor: Arnold Chase
  • Patent number: 10493855
    Abstract: An intelligent vehicle charging system for charging a fleet of autonomous vehicles throughout a network of charging stations dispersed throughout a geographic area. The intelligent vehicle charging system includes a remote control system that is in operative communication with each of the autonomous vehicles in the fleet and each of the charging stations in the network. When an autonomous vehicle is in need of a power charge, or as directed by the remote control system, the remote control system will identify an available charging station, guide the autonomous vehicle to the charging station, verify that the autonomous vehicle has arrived at the charging station, initiate the power charging process, account and bill appropriate fees for the charging process, and log all associated activity. The remote control system is also capable of remotely and instantaneously terminating the power charging process to dynamically return a vehicle back to service.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 3, 2019
    Inventors: Arnold Chase, William Chase
  • Publication number: 20190346857
    Abstract: A passive infra-red guidance system and method for augmenting operation of an autonomous vehicle on a roadway includes at least one forward-looking infra-red imaging sensor mounted on the vehicle in operative communication with an image processor tied into the vehicle's operational system. The system determines the left and right edges of the roadway using thermal imaging, and then determines the centerline of the travel lane in which the vehicle is travelling based on the determined left and right edges of the roadway. The system then compares the determined centerline of the travel lane with the actual position of the vehicle and identifies any adjustment needed for the vehicle's position based on the comparison. The left and right edge determination may comprise identifying a difference between a thermal signature representative of the roadway and a thermal signature representative of a non-roadway portion that is located proximate to the roadway portion.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 14, 2019
    Inventor: Arnold Chase
  • Publication number: 20190346855
    Abstract: A passive infra-red guidance system and method for augmenting operation of an autonomous vehicle on a roadway includes at least one forward-looking infra-red imaging sensor mounted on the vehicle in operative communication with an image processor tied into the vehicle's operational system. The system determines the left and right edges of the roadway using thermal imaging, and then determines the centerline of the travel lane in which the vehicle is travelling based on the determined left and right edges of the roadway. The system then compares the determined centerline of the travel lane with the actual position of the vehicle and identifies any adjustment needed for the vehicle's position based on the comparison. The left and right edge determination may comprise identifying a difference between a thermal signature representative of the roadway and a thermal signature representative of a non-roadway portion that is located proximate to the roadway portion.
    Type: Application
    Filed: March 18, 2019
    Publication date: November 14, 2019
    Inventor: Arnold Chase
  • Publication number: 20190347938
    Abstract: A passive infra-red pedestrian detection and avoidance system and method for augmenting the operation of a vehicle on a roadway, especially for identifying potential pedestrian/vehicular collision danger for the vehicle in operation and adjusting the position and operation of the vehicle accordingly, includes at least one passive infra-red sensor array mounted on the vehicle in operative communication with an image processor tied into the operational system of the vehicle. The system detects, using thermal imaging and processing, the presence of people that may be in or laterally crossing into the travel lane of the vehicle. The image processor analyzes the detection of a human thermal signature and determines if the detected human thermal signature is moving, in what direction and at what speed, to assess any potential threat to the pedestrian or biker, and further whether any responsive action needs to be triggered in the vehicle's operation to avoid a collision.
    Type: Application
    Filed: March 15, 2019
    Publication date: November 14, 2019
    Inventor: Arnold Chase
  • Patent number: 10467903
    Abstract: A passive infra-red pedestrian detection and avoidance system and method for augmenting the operation of a vehicle on a roadway, especially for identifying potential pedestrian/vehicular collision danger for the vehicle in operation and adjusting the position and operation of the vehicle accordingly, includes at least one passive infra-red sensor array mounted on the vehicle in operative communication with an image processor tied into the operational system of the vehicle. The system detects, using thermal imaging and processing, the presence of people that may be in or laterally crossing into the travel lane of the vehicle. The image processor analyzes the detection of a human thermal signature and determines if the detected human thermal signature is moving, in what direction and at what speed, to assess any potential threat to the pedestrian or biker, and further whether any responsive action needs to be triggered in the vehicle's operation to avoid a collision.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 5, 2019
    Inventor: Arnold Chase
  • Patent number: 10444023
    Abstract: The present application is directed to an Autonomous Vehicle Enhancement System (AVES) and method for monitoring and managing a virtual or existing fleet of autonomous vehicles in a transportation network and dispatching the autonomous vehicles to users. The AVES includes an AVES Central Operations Center (COC) that communicates with AVES vehicle equipment installed in the autonomous vehicles and AVES applications installed on computing devices accessible by the users. The AVES improves the operating efficiency of a transportation network by monitoring the condition of autonomous vehicles, optimizing the geographical distribution of the autonomous vehicles and optimizing assignment of the autonomous vehicles to users requesting services. The AVES COC monitors and controls the autonomous vehicles via the AVES vehicle equipment. The AVES COC communicates with the users via the AVES applications to provide services to the users.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 15, 2019
    Inventors: Arnold Chase, William Chase
  • Publication number: 20190308632
    Abstract: The Dynamic Vehicle Separation System (DVSS) according to the present application allows properly equipped vehicles in traffic to maintain safe and optimal separation distances (i.e., following distances), which are automatically and continually calculated based on numerous criteria. Vehicles are equipped with Dynamic Vehicle Separation Controllers (DVSCs) that communicate with each other to maintain proper separation distances among the vehicles.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 10, 2019
    Inventor: Arnold Chase
  • Publication number: 20190308635
    Abstract: The Dynamic Vehicle Separation System (DVSS) according to the present application allows properly equipped vehicles in traffic to maintain safe and optimal separation distances (i.e., following distances), which are automatically and continually calculated based on numerous criteria. Vehicles are equipped with Dynamic Vehicle Separation Controllers (DVSCs) that communicate with each other to maintain proper separation distances among the vehicles.
    Type: Application
    Filed: May 20, 2019
    Publication date: October 10, 2019
    Inventor: Arnold Chase
  • Publication number: 20190290161
    Abstract: A blood glucose tracking system and method measures emitted microwave energy transmitted to and accepted by blood vessels in a desired target area of a patient in order to determine, in real time and in vivo, appropriate blood glucose levels. A measurement unit comprises a transmitter operatively connected to an antenna to deliver energy towards appropriate subcutaneous blood vessels. The measurement unit determines an accepted energy power value in the blood vessels associated with the desired target area. This measurement energy power value is compared with a calibration value, and the difference is used to determine a resultant blood glucose value. The determined blood glucose value may further be acclimatized using additional sensed values compensating for biological and ambient factors relevant to the patient. The final determined blood glucose value can be displayed for reading and/or transmitted and stored for recording for further reference.
    Type: Application
    Filed: August 31, 2018
    Publication date: September 26, 2019
    Inventor: Arnold Chase
  • Publication number: 20190239779
    Abstract: A diversified glucose sensor system comprises an introducer needle and two or more independent sensor bodies, each sensor body having one or more sensing elements that can be subcutaneously positioned in a patient's body by insertion of the introducer needle for glucose measurement. The system further includes a progressive insertion device comprising an insertion shaft that pushes the sensor bodies out the end opening of the introducer needle to a desired depth in the patient prior to removal of the insertion shaft and the introducer needle. The sensor bodies are bent or folded and held under stress within the introducer needle for insertion, and released and biased outwardly when pushed out of the introducer needle. The sensing elements are anchored and disposed within the patient at positions providing X/Y/Z-axis diversity for measurement.
    Type: Application
    Filed: August 31, 2018
    Publication date: August 8, 2019
    Inventor: Arnold Chase
  • Publication number: 20190041850
    Abstract: An autonomous vehicle mode regulator system and method comprise transmitting authorization signals from autonomous driving infrastructure on a roadway to a controller module to authorize or inhibit operation of a vehicle in different levels of automation. The controller module controls the level of automation under which the autonomous driving system of the vehicle operates based on the signals received from the autonomous driving infrastructure. In this regard, the controller module can prevent the autonomous driving system of the vehicle from operating in certain levels of automation unless appropriate authorizations signals are received. Similarly, the controller module can permit or even require operation of the vehicle in certain levels of automation upon receipt of certain authorization signals.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 7, 2019
    Inventors: Arnold Chase, William Chase
  • Publication number: 20190035037
    Abstract: The present application is directed to a virtual restaurant system (VRS) providing centrally managed ordering, production and delivery of branded food items normally only available from different restaurant menus. By using the VRS, a customer may select food items as if from different restaurant menus in a single order, the selected food items may be simultaneously prepared at a single food production facility and the selected food items may be delivered to the customer in a single delivery. The VRS includes a computer ordering system that is accessible by customers via VRS applications installed on computing devices. The VRS further includes one or more central kitchen facilities located in different geographic areas. The VRS may also include food delivery equipment installed on delivery vehicles.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 31, 2019
    Inventors: Arnold Chase, William Chase
  • Publication number: 20180336782
    Abstract: An Improved Roadway Guidance System provides guidance elements in a roadway as means to guide a vehicle along the roadway, as well as supply important information to the vehicle to enhance the autonomous operation of the vehicle in a safe and efficient manner. The system comprises at least three parts: (1) the use of overlaid roadway “emitter strips” that provide an extended excitation/emission field simultaneous with direct guidance instructions to passing vehicles; (2) the use of a linearly-arranged antenna array system provided on the vehicle and adapted for interaction with the emitter strips for positionally locating the vehicle within a travel lane and providing additional informative data for operation of the vehicle; and (3) the use of a multi-port Receiver Unit that works with the antenna array and the host vehicle's guidance system to optimize autonomous operation of the vehicle.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 22, 2018
    Inventors: Arnold Chase, William Chase